1767 lines
58 KiB
Rust
Raw Normal View History

use std::collections::{HashSet, HashMap};
use std::fmt::Write;
use std::mem;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
use failure::{Error, ResultExt};
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
use parity_wasm::elements::*;
use parity_wasm;
use serde_json;
use shared;
use wasm_gc;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
use super::Bindgen;
use descriptor::{Descriptor, VectorKind};
mod js2rust;
use self::js2rust::Js2Rust;
mod rust2js;
use self::rust2js::Rust2Js;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
pub struct Context<'a> {
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
pub globals: String,
pub imports: String,
pub footer: String,
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
pub typescript: String,
pub exposed_globals: HashSet<&'static str>,
pub required_internal_exports: HashSet<&'static str>,
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
pub config: &'a Bindgen,
pub module: &'a mut Module,
pub imported_names: HashSet<String>,
pub exported_classes: HashMap<String, ExportedClass>,
pub function_table_needed: bool,
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
pub run_descriptor: &'a Fn(&str) -> Vec<u32>,
pub module_versions: Vec<(String, String)>,
}
#[derive(Default)]
pub struct ExportedClass {
contents: String,
typescript: String,
constructor: Option<String>,
fields: Vec<ClassField>,
}
struct ClassField {
name: String,
readonly: bool,
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
pub struct SubContext<'a, 'b: 'a> {
pub program: &'a shared::Program,
pub cx: &'a mut Context<'b>,
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
impl<'a> Context<'a> {
fn export(&mut self, name: &str, contents: &str) {
let contents = deindent(contents);
let contents = contents.trim();
let global = if self.config.nodejs {
if contents.starts_with("class") {
format!("{1}\nmodule.exports.{0} = {0};\n", name, contents)
} else {
format!("module.exports.{} = {};\n", name, contents)
}
2018-04-11 13:59:58 +05:45
} else if self.config.no_modules {
if contents.starts_with("class") {
format!("{1}\n__exports.{0} = {0};\n", name, contents)
} else {
format!("__exports.{} = {};\n", name, contents)
}
} else {
if contents.starts_with("function") {
format!("export function {}{}\n", name, &contents[8..])
} else if contents.starts_with("class") {
format!("export {}\n", contents)
} else {
format!("export const {} = {};\n", name, contents)
}
};
2018-04-14 09:37:49 -07:00
self.global(&global);
}
fn require_internal_export(&mut self, name: &'static str)
-> Result<(), Error>
{
if !self.required_internal_exports.insert(name) {
return Ok(())
}
if let Some(s) = self.module.export_section() {
if s.entries().iter().any(|e| e.field() == name) {
return Ok(())
}
}
bail!("the exported function `{}` is required to generate bindings \
but it was not found in the wasm file, perhaps the `std` feature \
of the `wasm-bindgen` crate needs to be enabled?",
name);
}
pub fn finalize(&mut self, module_name: &str) -> Result<(String, String), Error> {
self.write_classes()?;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
self.bind("__wbindgen_object_clone_ref", &|me| {
me.expose_add_heap_object();
me.expose_get_object();
let bump_cnt = if me.config.debug {
String::from("
if (typeof(val) === 'number')
throw new Error('corrupt slab');
val.cnt += 1;
")
} else {
String::from("val.cnt += 1;")
};
Ok(format!("
function(idx) {{
// If this object is on the stack promote it to the heap.
if ((idx & 1) === 1)
return addHeapObject(getObject(idx));
// Otherwise if the object is on the heap just bump the
// refcount and move on
const val = slab[idx >> 1];
{}
return idx;
}}
", bump_cnt))
})?;
self.bind("__wbindgen_object_drop_ref", &|me| {
me.expose_drop_ref();
Ok("function(i) { dropRef(i); }".to_string())
})?;
self.bind("__wbindgen_string_new", &|me| {
me.expose_add_heap_object();
me.expose_get_string_from_wasm();
Ok(String::from("
function(p, l) {
return addHeapObject(getStringFromWasm(p, l));
}
"))
})?;
self.bind("__wbindgen_number_new", &|me| {
me.expose_add_heap_object();
Ok(String::from("function(i) { return addHeapObject(i); }"))
})?;
self.bind("__wbindgen_number_get", &|me| {
me.expose_get_object();
me.expose_uint8_memory();
Ok(format!("
function(n, invalid) {{
let obj = getObject(n);
if (typeof(obj) === 'number')
return obj;
getUint8Memory()[invalid] = 1;
return 0;
}}
"))
})?;
self.bind("__wbindgen_undefined_new", &|me| {
me.expose_add_heap_object();
Ok(String::from("function() { return addHeapObject(undefined); }"))
})?;
self.bind("__wbindgen_null_new", &|me| {
me.expose_add_heap_object();
Ok(String::from("
function() {
return addHeapObject(null);
}
"))
})?;
self.bind("__wbindgen_is_null", &|me| {
me.expose_get_object();
Ok(String::from("
function(idx) {
return getObject(idx) === null ? 1 : 0;
}
"))
})?;
self.bind("__wbindgen_is_undefined", &|me| {
me.expose_get_object();
Ok(String::from("
function(idx) {
return getObject(idx) === undefined ? 1 : 0;
}
"))
})?;
self.bind("__wbindgen_boolean_new", &|me| {
me.expose_add_heap_object();
Ok(String::from("
function(v) {
return addHeapObject(v === 1);
}
"))
})?;
self.bind("__wbindgen_boolean_get", &|me| {
me.expose_get_object();
Ok(String::from("
function(i) {
let v = getObject(i);
if (typeof(v) === 'boolean') {
return v ? 1 : 0;
} else {
return 2;
}
}
"))
})?;
self.bind("__wbindgen_symbol_new", &|me| {
me.expose_get_string_from_wasm();
me.expose_add_heap_object();
Ok(format!("
function(ptr, len) {{
let a;
if (ptr === 0) {{
a = Symbol();
}} else {{
a = Symbol(getStringFromWasm(ptr, len));
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}}
return addHeapObject(a);
}}
"))
})?;
self.bind("__wbindgen_is_symbol", &|me| {
me.expose_get_object();
Ok(String::from("
function(i) {
return typeof(getObject(i)) === 'symbol' ? 1 : 0;
}
"))
})?;
self.bind("__wbindgen_string_get", &|me| {
me.expose_pass_string_to_wasm()?;
me.expose_get_object();
me.expose_uint32_memory();
Ok(String::from("
function(i, len_ptr) {
let obj = getObject(i);
if (typeof(obj) !== 'string')
return 0;
const [ptr, len] = passStringToWasm(obj);
getUint32Memory()[len_ptr / 4] = len;
return ptr;
}
"))
})?;
self.bind("__wbindgen_cb_drop", &|me| {
me.expose_drop_ref();
Ok(String::from("
function(i) {
let obj = getObject(i).original;
obj.a = obj.b = 0;
dropRef(i);
}
"))
})?;
self.bind("__wbindgen_cb_forget", &|me| {
me.expose_drop_ref();
Ok(String::from("
function(i) {
dropRef(i);
}
"))
})?;
self.bind("__wbindgen_json_parse", &|me| {
me.expose_add_heap_object();
me.expose_get_string_from_wasm();
Ok(String::from("
function(ptr, len) {
return addHeapObject(JSON.parse(getStringFromWasm(ptr, len)));
}
"))
})?;
self.bind("__wbindgen_json_serialize", &|me| {
me.expose_get_object();
me.expose_pass_string_to_wasm()?;
me.expose_uint32_memory();
Ok(String::from("
function(idx, ptrptr) {
const [ptr, len] = passStringToWasm(JSON.stringify(getObject(idx)));
getUint32Memory()[ptrptr / 4] = ptr;
return len;
}
"))
})?;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
self.bind("__wbindgen_jsval_eq", &|me| {
me.expose_get_object();
Ok(String::from("
function(a, b) {
return getObject(a) === getObject(b) ? 1 : 0;
}
"))
})?;
self.unexport_unused_internal_exports();
self.gc()?;
// Note that it's important `throw` comes last *after* we gc. The
// `__wbindgen_malloc` function may call this but we only want to
// generate code for this if it's actually live (and __wbindgen_malloc
// isn't gc'd).
self.bind("__wbindgen_throw", &|me| {
me.expose_get_string_from_wasm();
Ok(format!("
function(ptr, len) {{
throw new Error(getStringFromWasm(ptr, len));
}}
"))
})?;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
self.rewrite_imports(module_name);
2018-04-14 09:37:49 -07:00
let mut js = if self.config.no_modules {
2018-04-05 19:50:26 +05:45
format!("
2018-04-13 14:25:27 +05:45
(function() {{
var wasm;
2018-04-13 14:25:27 +05:45
const __exports = {{}};
{globals}
function init(wasm_path) {{
return fetch(wasm_path)
.then(response => response.arrayBuffer())
.then(buffer => WebAssembly.instantiate(buffer, {{ './{module}': __exports }}))
.then(({{instance}}) => {{
wasm = init.wasm = instance.exports;
return;
}});
}};
self.{global_name} = Object.assign(init, __exports);
2018-04-13 14:25:27 +05:45
}})();
2018-04-05 19:50:26 +05:45
",
2018-04-05 20:30:58 +05:45
globals = self.globals,
module = module_name,
global_name = self.config.no_modules_global
.as_ref()
.map(|s| &**s)
.unwrap_or("wasm_bindgen"),
2018-04-05 19:50:26 +05:45
)
} else {
let import_wasm = if self.config.nodejs {
self.footer.push_str(&format!("wasm = require('./{}_bg');",
module_name));
format!("var wasm;")
} else {
format!("import * as wasm from './{}_bg';", module_name)
};
2018-04-14 09:37:49 -07:00
format!("\
/* tslint:disable */\n\
{import_wasm}\n\
{imports}\n\
2018-04-05 19:50:26 +05:45
2018-04-14 09:37:49 -07:00
{globals}\n\
2018-04-05 19:50:26 +05:45
{footer}",
import_wasm = import_wasm,
globals = self.globals,
imports = self.imports,
footer = self.footer,
)
};
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
self.export_table();
self.gc()?;
self.add_wasm_pack_section();
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
2018-04-14 09:37:49 -07:00
while js.contains("\n\n\n") {
js = js.replace("\n\n\n", "\n\n");
}
Ok((js, self.typescript.clone()))
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn bind(&mut self, name: &str, f: &Fn(&mut Self) -> Result<String, Error>)
-> Result<(), Error>
{
if !self.wasm_import_needed(name) {
return Ok(());
}
let contents = f(self)
.with_context(|_| {
format!("failed to generate internal JS function `{}`", name)
})?;
self.export(name, &contents);
Ok(())
}
fn write_classes(&mut self) -> Result<(), Error> {
let classes = mem::replace(&mut self.exported_classes, Default::default());
for (class, exports) in classes {
self.write_class(&class, &exports)?;
}
Ok(())
}
fn write_class(&mut self, name: &str, class: &ExportedClass) -> Result<(), Error> {
let mut dst = format!("class {} {{\n", name);
let mut ts_dst = format!("export {}", dst);
if self.config.debug || class.constructor.is_some() {
self.expose_constructor_token();
dst.push_str(&format!("
static __construct(ptr) {{
return new {}(new ConstructorToken(ptr));
}}
constructor(...args) {{
if (args.length === 1 && args[0] instanceof ConstructorToken) {{
this.ptr = args[0].ptr;
return;
}}
", name));
if let Some(ref constructor) = class.constructor {
ts_dst.push_str(&format!("constructor(...args: any[]);\n"));
dst.push_str(&format!("
// This invocation of new will call this constructor with a ConstructorToken
let instance = {class}.{constructor}(...args);
this.ptr = instance.ptr;
", class = name, constructor = constructor));
} else {
dst.push_str("throw new Error('you cannot invoke `new` directly without having a \
method annotated a constructor');");
}
dst.push_str("}");
} else {
dst.push_str(&format!("
static __construct(ptr) {{
return new {}(ptr);
}}
constructor(ptr) {{
this.ptr = ptr;
}}
", name));
}
let new_name = shared::new_function(&name);
if self.wasm_import_needed(&new_name) {
self.expose_add_heap_object();
self.export(&new_name, &format!("
function(ptr) {{
return addHeapObject({}.__construct(ptr));
}}
", name));
}
for field in class.fields.iter() {
let wasm_getter = shared::struct_field_get(name, &field.name);
let wasm_setter = shared::struct_field_set(name, &field.name);
let descriptor = self.describe(&wasm_getter);
let set = {
let mut cx = Js2Rust::new(&field.name, self);
cx.method(true)
.argument(&descriptor)?
.ret(&None)?;
ts_dst.push_str(&format!("{}{}: {}\n",
if field.readonly { "readonly " } else { "" },
field.name,
&cx.js_arguments[0].1));
cx.finish("", &format!("wasm.{}", wasm_setter)).0
};
let (get, _ts) = Js2Rust::new(&field.name, self)
.method(true)
.ret(&Some(descriptor))?
.finish("", &format!("wasm.{}", wasm_getter));
dst.push_str("get ");
dst.push_str(&field.name);
dst.push_str(&get);
dst.push_str("\n");
if !field.readonly {
dst.push_str("set ");
dst.push_str(&field.name);
dst.push_str(&set);
}
}
dst.push_str(&format!("
free() {{
const ptr = this.ptr;
this.ptr = 0;
wasm.{}(ptr);
}}
", shared::free_function(&name)));
ts_dst.push_str("free(): void;\n");
dst.push_str(&class.contents);
ts_dst.push_str(&class.typescript);
dst.push_str("}\n");
ts_dst.push_str("}\n");
self.export(&name, &dst);
self.typescript.push_str(&ts_dst);
Ok(())
}
fn export_table(&mut self) {
if !self.function_table_needed {
return
}
for section in self.module.sections_mut() {
let exports = match *section {
Section::Export(ref mut s) => s,
_ => continue,
};
let entry = ExportEntry::new("__wbg_function_table".to_string(),
Internal::Table(0));
exports.entries_mut().push(entry);
break
}
}
fn rewrite_imports(&mut self, module_name: &str) {
for (name, contents) in self._rewrite_imports(module_name) {
self.export(&name, &contents);
}
}
fn _rewrite_imports(&mut self, module_name: &str)
2018-04-07 13:06:36 +05:45
-> Vec<(String, String)>
{
let mut math_imports = Vec::new();
let imports = self.module.sections_mut()
.iter_mut()
.filter_map(|s| {
match *s {
Section::Import(ref mut s) => Some(s),
_ => None,
}
})
.flat_map(|s| s.entries_mut());
for import in imports {
if import.module() == "__wbindgen_placeholder__" {
import.module_mut().truncate(0);
import.module_mut().push_str("./");
import.module_mut().push_str(module_name);
2018-04-07 13:06:36 +05:45
continue;
}
if import.module() != "env" {
2018-04-07 13:06:36 +05:45
continue;
}
let renamed_import = format!("__wbindgen_{}", import.field());
let mut bind_math = |expr: &str| {
math_imports.push((
renamed_import.clone(),
format!("function{}", expr),
));
};
// FIXME(#32): try to not use function shims
match import.field() {
"Math_acos" => bind_math("(x) { return Math.acos(x); }"),
"Math_asin" => bind_math("(x) { return Math.asin(x); }"),
"Math_atan" => bind_math("(x) { return Math.atan(x); }"),
"Math_atan2" => bind_math("(x, y) { return Math.atan2(x, y); }"),
"Math_cbrt" => bind_math("(x) { return Math.cbrt(x); }"),
"Math_cosh" => bind_math("(x) { return Math.cosh(x); }"),
"Math_expm1" => bind_math("(x) { return Math.expm1(x); }"),
"Math_hypot" => bind_math("(x, y) { return Math.hypot(x, y); }"),
"Math_log1p" => bind_math("(x) { return Math.log1p(x); }"),
"Math_sinh" => bind_math("(x) { return Math.sinh(x); }"),
"Math_tan" => bind_math("(x) { return Math.tan(x); }"),
"Math_tanh" => bind_math("(x) { return Math.tanh(x); }"),
"cos" => bind_math("(x) { return Math.cos(x); }"),
"cosf" => bind_math("(x) { return Math.cos(x); }"),
"exp" => bind_math("(x) { return Math.exp(x); }"),
"expf" => bind_math("(x) { return Math.exp(x); }"),
"log2" => bind_math("(x) { return Math.log2(x); }"),
"log2f" => bind_math("(x) { return Math.log2(x); }"),
"log10" => bind_math("(x) { return Math.log10(x); }"),
"log10f" => bind_math("(x) { return Math.log10(x); }"),
"log" => bind_math("(x) { return Math.log(x); }"),
"logf" => bind_math("(x) { return Math.log(x); }"),
"round" => bind_math("(x) { return Math.round(x); }"),
"roundf" => bind_math("(x) { return Math.round(x); }"),
"sin" => bind_math("(x) { return Math.sin(x); }"),
"sinf" => bind_math("(x) { return Math.sin(x); }"),
"pow" => bind_math("(x, y) { return Math.pow(x, y); }"),
"powf" => bind_math("(x, y) { return Math.pow(x, y); }"),
"exp2" => bind_math("(a) { return Math.pow(2, a); }"),
"exp2f" => bind_math("(a) { return Math.pow(2, a); }"),
"fmod" => bind_math("(a, b) { return a % b; }"),
"fmodf" => bind_math("(a, b) { return a % b; }"),
"fma" => bind_math("(a, b, c) { return (a * b) + c; }"),
"fmaf" => bind_math("(a, b, c) { return (a * b) + c; }"),
_ => continue,
}
import.module_mut().truncate(0);
import.module_mut().push_str("./");
import.module_mut().push_str(module_name);
*import.field_mut() = renamed_import.clone();
}
math_imports
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn unexport_unused_internal_exports(&mut self) {
let required = &self.required_internal_exports;
for section in self.module.sections_mut() {
let exports = match *section {
Section::Export(ref mut s) => s,
_ => continue,
};
exports.entries_mut().retain(|export| {
!export.field().starts_with("__wbindgen") ||
required.contains(export.field())
});
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
fn expose_drop_ref(&mut self) {
if !self.exposed_globals.insert("drop_ref") {
2018-04-07 13:06:36 +05:45
return;
}
self.expose_global_slab();
self.expose_global_slab_next();
let validate_owned = if self.config.debug {
String::from("
if ((idx & 1) === 1)
throw new Error('cannot drop ref of stack objects');
")
} else {
String::new()
};
let dec_ref = if self.config.debug {
String::from("
if (typeof(obj) === 'number')
throw new Error('corrupt slab');
obj.cnt -= 1;
if (obj.cnt > 0)
return;
")
} else {
String::from("
obj.cnt -= 1;
if (obj.cnt > 0)
return;
")
};
2018-04-14 09:37:49 -07:00
self.global(&format!("
function dropRef(idx) {{
{}
let obj = slab[idx >> 1];
{}
// If we hit 0 then free up our space in the slab
slab[idx >> 1] = slab_next;
slab_next = idx >> 1;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}}
", validate_owned, dec_ref));
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
fn expose_global_stack(&mut self) {
if !self.exposed_globals.insert("stack") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
let stack = [];
"));
if self.config.debug {
self.export("assertStackEmpty", "
function() {
if (stack.length === 0)
return;
throw new Error('stack is not currently empty');
}
");
}
}
fn expose_global_slab(&mut self) {
if !self.exposed_globals.insert("slab") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
let initial_values = [
"{ obj: null }",
"{ obj: undefined }",
"{ obj: true }",
"{ obj: false }",
];
self.global(&format!("let slab = [{}];", initial_values.join(", ")));
if self.config.debug {
self.export("assertSlabEmpty", &format!("
function() {{
for (let i = {}; i < slab.length; i++) {{
if (typeof(slab[i]) === 'number')
continue;
throw new Error('slab is not currently empty');
}}
}}
", initial_values.len()));
}
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
fn expose_global_slab_next(&mut self) {
if !self.exposed_globals.insert("slab_next") {
2018-04-07 13:06:36 +05:45
return;
}
self.expose_global_slab();
2018-04-14 09:37:49 -07:00
self.global(&format!("
let slab_next = slab.length;
"));
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn expose_get_object(&mut self) {
if !self.exposed_globals.insert("get_object") {
2018-04-07 13:06:36 +05:45
return;
}
self.expose_global_stack();
self.expose_global_slab();
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
let get_obj = if self.config.debug {
String::from("
if (typeof(val) === 'number')
throw new Error('corrupt slab');
return val.obj;
")
} else {
String::from("
return val.obj;
")
};
2018-04-14 09:37:49 -07:00
self.global(&format!("
function getObject(idx) {{
if ((idx & 1) === 1) {{
return stack[idx >> 1];
}} else {{
const val = slab[idx >> 1];
{}
}}
}}
", get_obj));
}
fn expose_assert_num(&mut self) {
if !self.exposed_globals.insert("assert_num") {
2018-04-07 13:06:36 +05:45
return;
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
function _assertNum(n) {{
if (typeof(n) !== 'number')
throw new Error('expected a number argument');
}}
"));
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
fn expose_assert_bool(&mut self) {
if !self.exposed_globals.insert("assert_bool") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
function _assertBoolean(n) {{
if (typeof(n) !== 'boolean')
throw new Error('expected a boolean argument');
}}
"));
}
fn expose_pass_string_to_wasm(&mut self) -> Result<(), Error> {
if !self.exposed_globals.insert("pass_string_to_wasm") {
return Ok(());
}
self.require_internal_export("__wbindgen_malloc")?;
self.expose_text_encoder();
self.expose_uint8_memory();
let debug = if self.config.debug {
"
if (typeof(arg) !== 'string')
throw new Error('expected a string argument');
"
} else {
""
};
2018-04-14 09:37:49 -07:00
self.global(&format!("
function passStringToWasm(arg) {{
{}
const buf = cachedEncoder.encode(arg);
const ptr = wasm.__wbindgen_malloc(buf.length);
2018-04-03 13:20:56 -07:00
getUint8Memory().set(buf, ptr);
return [ptr, buf.length];
}}
", debug));
Ok(())
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn expose_pass_array8_to_wasm(&mut self) -> Result<(), Error> {
self.expose_uint8_memory();
self.pass_array_to_wasm("passArray8ToWasm", "getUint8Memory", 1)
}
fn expose_pass_array16_to_wasm(&mut self) -> Result<(), Error> {
self.expose_uint16_memory();
self.pass_array_to_wasm("passArray16ToWasm", "getUint16Memory", 2)
}
fn expose_pass_array32_to_wasm(&mut self) -> Result<(), Error> {
self.expose_uint32_memory();
self.pass_array_to_wasm("passArray32ToWasm", "getUint32Memory", 4)
}
fn expose_pass_array64_to_wasm(&mut self) -> Result<(), Error> {
self.expose_uint64_memory();
self.pass_array_to_wasm("passArray64ToWasm", "getUint64Memory", 8)
}
fn expose_pass_array_f32_to_wasm(&mut self) -> Result<(), Error> {
self.expose_f32_memory();
self.pass_array_to_wasm("passArrayF32ToWasm", "getFloat32Memory", 4)
}
fn expose_pass_array_f64_to_wasm(&mut self) -> Result<(), Error> {
self.expose_f64_memory();
self.pass_array_to_wasm("passArrayF64ToWasm", "getFloat64Memory", 8)
}
fn pass_array_to_wasm(&mut self,
name: &'static str,
delegate: &str,
size: usize) -> Result<(), Error>
{
if !self.exposed_globals.insert(name) {
return Ok(())
}
self.require_internal_export("__wbindgen_malloc")?;
self.expose_uint64_memory();
2018-04-14 09:37:49 -07:00
self.global(&format!("
function {}(arg) {{
const ptr = wasm.__wbindgen_malloc(arg.length * {size});
{}().set(arg, ptr / {size});
return [ptr, arg.length];
}}
", name, delegate, size = size));
Ok(())
}
fn expose_text_encoder(&mut self) {
if !self.exposed_globals.insert("text_encoder") {
2018-04-07 13:06:36 +05:45
return;
}
if self.config.nodejs {
2018-04-14 09:37:49 -07:00
self.global(&format!("
2018-04-04 11:22:13 +02:00
const TextEncoder = require('util').TextEncoder;
"));
2018-04-11 13:59:58 +05:45
} else if !(self.config.browser || self.config.no_modules) {
2018-04-14 09:37:49 -07:00
self.global(&format!("
const TextEncoder = typeof self === 'object' && self.TextEncoder
? self.TextEncoder
2018-04-03 08:09:25 -07:00
: require('util').TextEncoder;
"));
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
let cachedEncoder = new TextEncoder('utf-8');
"));
2018-02-05 16:39:11 -08:00
}
fn expose_text_decoder(&mut self) {
if !self.exposed_globals.insert("text_decoder") {
2018-04-07 13:06:36 +05:45
return;
2018-02-05 16:39:11 -08:00
}
if self.config.nodejs {
2018-04-14 09:37:49 -07:00
self.global(&format!("
const TextDecoder = require('util').TextDecoder;
"));
2018-04-11 13:59:58 +05:45
} else if !(self.config.browser || self.config.no_modules) {
2018-04-14 09:37:49 -07:00
self.global(&format!("
const TextDecoder = typeof self === 'object' && self.TextDecoder
? self.TextDecoder
2018-04-03 08:09:25 -07:00
: require('util').TextDecoder;
"));
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
let cachedDecoder = new TextDecoder('utf-8');
"));
}
2018-02-05 16:39:11 -08:00
fn expose_constructor_token(&mut self) {
if !self.exposed_globals.insert("ConstructorToken") {
return;
}
2018-04-14 09:37:49 -07:00
self.global("
class ConstructorToken {
constructor(ptr) {
this.ptr = ptr;
}
}
");
}
fn expose_get_string_from_wasm(&mut self) {
if !self.exposed_globals.insert("get_string_from_wasm") {
2018-04-07 13:06:36 +05:45
return;
}
self.expose_text_decoder();
self.expose_uint8_memory();
2018-04-14 09:37:49 -07:00
self.global(&format!("
function getStringFromWasm(ptr, len) {{
return cachedDecoder.decode(getUint8Memory().subarray(ptr, ptr + len));
}}
"));
2018-02-05 16:39:11 -08:00
}
2018-02-28 10:56:56 +01:00
fn expose_get_array_js_value_from_wasm(&mut self) {
if !self.exposed_globals.insert("get_array_js_value_from_wasm") {
2018-04-07 13:06:36 +05:45
return;
2018-02-28 10:56:56 +01:00
}
2018-02-28 17:29:40 +01:00
self.expose_get_array_u32_from_wasm();
self.expose_take_object();
2018-04-14 09:37:49 -07:00
self.global(&format!("
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
function getArrayJsValueFromWasm(ptr, len) {{
const mem = getUint32Memory();
const slice = mem.subarray(ptr / 4, ptr / 4 + len);
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
const result = [];
for (let i = 0; i < slice.length; i++) {{
result.push(takeObject(slice[i]))
2018-02-28 10:56:56 +01:00
}}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
return result;
}}
"));
2018-02-28 10:56:56 +01:00
}
fn expose_get_array_i8_from_wasm(&mut self) {
self.expose_int8_memory();
self.arrayget("getArrayI8FromWasm", "getInt8Memory", 1);
}
fn expose_get_array_u8_from_wasm(&mut self) {
self.expose_uint8_memory();
self.arrayget("getArrayU8FromWasm", "getUint8Memory", 1);
}
fn expose_get_array_i16_from_wasm(&mut self) {
self.expose_int16_memory();
self.arrayget("getArrayI16FromWasm", "getInt16Memory", 2);
}
fn expose_get_array_u16_from_wasm(&mut self) {
self.expose_uint16_memory();
self.arrayget("getArrayU16FromWasm", "getUint16Memory", 2);
}
fn expose_get_array_i32_from_wasm(&mut self) {
self.expose_int32_memory();
self.arrayget("getArrayI32FromWasm", "getInt32Memory", 4);
}
fn expose_get_array_u32_from_wasm(&mut self) {
self.expose_uint32_memory();
self.arrayget("getArrayU32FromWasm", "getUint32Memory", 4);
}
fn expose_get_array_i64_from_wasm(&mut self) {
self.expose_int64_memory();
self.arrayget("getArrayI64FromWasm", "getInt64Memory", 8);
}
fn expose_get_array_u64_from_wasm(&mut self) {
self.expose_uint64_memory();
self.arrayget("getArrayU64FromWasm", "getUint64Memory", 8);
}
fn expose_get_array_f32_from_wasm(&mut self) {
self.expose_f32_memory();
self.arrayget("getArrayF32FromWasm", "getFloat32Memory", 4);
}
fn expose_get_array_f64_from_wasm(&mut self) {
self.expose_f64_memory();
self.arrayget("getArrayF64FromWasm", "getFloat64Memory", 8);
}
fn arrayget(&mut self, name: &'static str, mem: &'static str, size: usize) {
if !self.exposed_globals.insert(name) {
2018-04-07 13:06:36 +05:45
return;
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
function {name}(ptr, len) {{
return {mem}().subarray(ptr / {size}, ptr / {size} + len);
}}
",
name = name,
mem = mem,
size = size,
));
}
fn expose_int8_memory(&mut self) {
self.memview("getInt8Memory", "Int8Array");
}
fn expose_uint8_memory(&mut self) {
self.memview("getUint8Memory", "Uint8Array");
}
fn expose_int16_memory(&mut self) {
self.memview("getInt16Memory", "Int16Array");
}
fn expose_uint16_memory(&mut self) {
self.memview("getUint16Memory", "Uint16Array");
}
fn expose_int32_memory(&mut self) {
self.memview("getInt32Memory", "Int32Array");
}
fn expose_uint32_memory(&mut self) {
self.memview("getUint32Memory", "Uint32Array");
}
fn expose_int64_memory(&mut self) {
self.memview("getInt64Memory", "BigInt64Array");
}
fn expose_uint64_memory(&mut self) {
self.memview("getUint64Memory", "BigUint64Array");
}
fn expose_f32_memory(&mut self) {
self.memview("getFloat32Memory", "Float32Array");
}
fn expose_f64_memory(&mut self) {
self.memview("getFloat64Memory", "Float64Array");
}
fn memview_function(&mut self, t: VectorKind) -> &'static str {
match t {
VectorKind::String => {
self.expose_uint8_memory();
"getUint8Memory"
}
VectorKind::I8 => {
self.expose_int8_memory();
"getInt8Memory"
}
VectorKind::U8 => {
self.expose_uint8_memory();
"getUint8Memory"
}
VectorKind::I16 => {
self.expose_int16_memory();
"getInt16Memory"
}
VectorKind::U16 => {
self.expose_uint16_memory();
"getUint16Memory"
}
VectorKind::I32 => {
self.expose_int32_memory();
"getInt32Memory"
}
VectorKind::U32 => {
self.expose_uint32_memory();
"getUint32Memory"
}
VectorKind::I64 => {
self.expose_int64_memory();
"getInt64Memory"
}
VectorKind::U64 => {
self.expose_uint64_memory();
"getUint64Memory"
}
VectorKind::F32 => {
self.expose_f32_memory();
"getFloat32Memory"
}
VectorKind::F64 => {
self.expose_f64_memory();
"getFloat64Memory"
}
VectorKind::Anyref => {
self.expose_uint32_memory();
"getUint32Memory"
}
}
}
fn memview(&mut self, name: &'static str, js: &str) {
if !self.exposed_globals.insert(name) {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
let cache{name} = null;
function {name}() {{
if (cache{name} === null ||
cache{name}.buffer !== wasm.memory.buffer)
cache{name} = new {js}(wasm.memory.buffer);
return cache{name};
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}}
",
name = name,
js = js,
));
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn expose_assert_class(&mut self) {
if !self.exposed_globals.insert("assert_class") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
2018-04-14 09:37:49 -07:00
self.global(&format!("
function _assertClass(instance, klass) {{
if (!(instance instanceof klass))
throw new Error(`expected instance of ${{klass.name}}`);
return instance.ptr;
}}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
"));
}
fn expose_borrowed_objects(&mut self) {
if !self.exposed_globals.insert("borrowed_objects") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
self.expose_global_stack();
2018-04-14 09:37:49 -07:00
self.global(&format!("
function addBorrowedObject(obj) {{
stack.push(obj);
return ((stack.length - 1) << 1) | 1;
}}
"));
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn expose_take_object(&mut self) {
if !self.exposed_globals.insert("take_object") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
self.expose_get_object();
self.expose_drop_ref();
2018-04-14 09:37:49 -07:00
self.global(&format!("
function takeObject(idx) {{
const ret = getObject(idx);
dropRef(idx);
return ret;
}}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
"));
}
fn expose_add_heap_object(&mut self) {
if !self.exposed_globals.insert("add_heap_object") {
2018-04-07 13:06:36 +05:45
return;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
self.expose_global_slab();
self.expose_global_slab_next();
let set_slab_next = if self.config.debug {
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
String::from("
if (typeof(next) !== 'number')
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
throw new Error('corrupt slab');
slab_next = next;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
")
} else {
String::from("
slab_next = next;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
")
};
2018-04-14 09:37:49 -07:00
self.global(&format!("
function addHeapObject(obj) {{
if (slab_next === slab.length)
slab.push(slab.length + 1);
const idx = slab_next;
const next = slab[idx];
{}
slab[idx] = {{ obj, cnt: 1 }};
return idx << 1;
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}}
", set_slab_next));
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn wasm_import_needed(&self, name: &str) -> bool {
let imports = match self.module.import_section() {
Some(s) => s,
None => return false,
};
imports.entries().iter().any(|i| {
i.module() == "__wbindgen_placeholder__" && i.field() == name
})
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn pass_to_wasm_function(&mut self, t: VectorKind) -> Result<&'static str, Error> {
let s = match t {
VectorKind::String => {
self.expose_pass_string_to_wasm()?;
"passStringToWasm"
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
VectorKind::I8 |
VectorKind::U8 => {
self.expose_pass_array8_to_wasm()?;
"passArray8ToWasm"
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
VectorKind::U16 |
VectorKind::I16 => {
self.expose_pass_array16_to_wasm()?;
"passArray16ToWasm"
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
VectorKind::I32 |
VectorKind::U32 => {
self.expose_pass_array32_to_wasm()?;
"passArray32ToWasm"
}
VectorKind::I64 |
VectorKind::U64 => {
self.expose_pass_array64_to_wasm()?;
"passArray64ToWasm"
}
VectorKind::F32 => {
self.expose_pass_array_f32_to_wasm()?;
"passArrayF32ToWasm"
}
VectorKind::F64 => {
self.expose_pass_array_f64_to_wasm()?;
"passArrayF64ToWasm"
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
VectorKind::Anyref => {
bail!("cannot pass list of JsValue to wasm yet")
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
}
};
Ok(s)
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
fn expose_get_vector_from_wasm(&mut self, ty: VectorKind) -> &'static str {
match ty {
VectorKind::String => {
self.expose_get_string_from_wasm();
"getStringFromWasm"
}
VectorKind::I8 => {
self.expose_get_array_i8_from_wasm();
"getArrayI8FromWasm"
}
VectorKind::U8 => {
self.expose_get_array_u8_from_wasm();
"getArrayU8FromWasm"
}
VectorKind::I16 => {
self.expose_get_array_i16_from_wasm();
"getArrayI16FromWasm"
}
VectorKind::U16 => {
self.expose_get_array_u16_from_wasm();
"getArrayU16FromWasm"
}
VectorKind::I32 => {
self.expose_get_array_i32_from_wasm();
"getArrayI32FromWasm"
}
VectorKind::U32 => {
self.expose_get_array_u32_from_wasm();
"getArrayU32FromWasm"
}
VectorKind::I64 => {
self.expose_get_array_i64_from_wasm();
"getArrayI64FromWasm"
}
VectorKind::U64 => {
self.expose_get_array_u64_from_wasm();
"getArrayU64FromWasm"
}
VectorKind::F32 => {
self.expose_get_array_f32_from_wasm();
"getArrayF32FromWasm"
}
VectorKind::F64 => {
self.expose_get_array_f64_from_wasm();
"getArrayF64FromWasm"
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
VectorKind::Anyref => {
2018-02-28 10:56:56 +01:00
self.expose_get_array_js_value_from_wasm();
"getArrayJsValueFromWasm"
}
}
}
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
fn expose_get_global_argument(&mut self) -> Result<(), Error> {
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
if !self.exposed_globals.insert("get_global_argument") {
return Ok(());
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
}
self.expose_uint32_memory();
self.expose_global_argument_ptr()?;
2018-04-14 09:37:49 -07:00
self.global("
2018-04-03 12:24:19 -07:00
function getGlobalArgument(arg) {
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
const idx = globalArgumentPtr() / 4 + arg;
return getUint32Memory()[idx];
2018-04-03 12:24:19 -07:00
}
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
");
Ok(())
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
}
fn expose_global_argument_ptr(&mut self) -> Result<(), Error> {
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
if !self.exposed_globals.insert("global_argument_ptr") {
return Ok(());
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
}
self.require_internal_export("__wbindgen_global_argument_ptr")?;
2018-04-14 09:37:49 -07:00
self.global("
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
let cachedGlobalArgumentPtr = null;
function globalArgumentPtr() {
if (cachedGlobalArgumentPtr === null)
cachedGlobalArgumentPtr = wasm.__wbindgen_global_argument_ptr();
return cachedGlobalArgumentPtr;
}
");
Ok(())
Start removal of vector special-casing This commit starts wasm-bindgen down a path of removing the special casing it currently has around vectors, slices, and strings. This has long been a thorn in wasm-bindgen's side as it doesn't handle other kinds of vectors and otherwise is very inflexible with future additions. Additionally it leads to a lot of duplicated-ish code throughout various portions of codegen. The fundamental reason for this was that two arguments were required to be passed back to wasm, and I couldn't figure out a way to shove both those arguments into a function argument. The new strategy here is that there is one global stack well known to both JS and Rust which arguments *may* also be transferred between. By default all ABI arguments pass as literal function arguments, but if two or more arguments need to be passed then the extra ones are all passed through this global stack. The stack is effectively temporary scratch space when crossing the JS/Rust boundary (both ways). No long term storage is intended here. The `simple` test is passing as a result of this commit, using strings internally. The `Vector` type in the AST has been removed (yay!) and the bulk of the implementation of slices and vectors now resides in the `wasm-bindgen` crate itself, defining how to pass all these arguments around. The JS generator, however, still needs to know about all the sorts of vectors so it can generate appropriate code for JS. Future commits will continue cleanup and get the rest of the tests working.
2018-03-31 07:57:47 -07:00
}
fn expose_get_inherited_descriptor(&mut self) {
if !self.exposed_globals.insert("get_inherited_descriptor") {
return
}
// It looks like while rare some browsers will move descriptors up the
// property chain which runs the risk of breaking wasm-bindgen-generated
// code because we're looking for precise descriptor functions rather
// than relying on the prototype chain like most "normal JS" projects
// do.
//
// As a result we have a small helper here which will walk the prototype
// chain looking for a descriptor. For some more information on this see
// #109
2018-04-14 09:37:49 -07:00
self.global("
function GetOwnOrInheritedPropertyDescriptor(obj, id) {
while (obj) {
let desc = Object.getOwnPropertyDescriptor(obj, id);
if (desc) return desc;
obj = Object.getPrototypeOf(obj);
}
throw \"descriptor not found\";
}
");
}
fn expose_u32_cvt_shim(&mut self) -> &'static str {
let name = "u32CvtShim";
if !self.exposed_globals.insert(name) {
return name
}
self.global(&format!("const {} = new Uint32Array(2);", name));
name
}
fn expose_int64_cvt_shim(&mut self) -> &'static str {
let name = "int64CvtShim";
if !self.exposed_globals.insert(name) {
return name
}
let n = self.expose_u32_cvt_shim();
self.global(&format!("const {} = new BigInt64Array({}.buffer);", name, n));
name
}
fn expose_uint64_cvt_shim(&mut self) -> &'static str {
let name = "uint64CvtShim";
if !self.exposed_globals.insert(name) {
return name
}
let n = self.expose_u32_cvt_shim();
self.global(&format!("const {} = new BigUint64Array({}.buffer);", name, n));
name
}
fn gc(&mut self) -> Result<(), Error> {
let module = mem::replace(self.module, Module::default());
let wasm_bytes = parity_wasm::serialize(module)?;
let bytes = wasm_gc::Config::new()
2018-04-11 11:43:18 -07:00
.demangle(self.config.demangle)
.gc(&wasm_bytes)?;
*self.module = deserialize_buffer(&bytes)?;
Ok(())
}
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
fn describe(&self, name: &str) -> Descriptor {
let name = format!("__wbindgen_describe_{}", name);
let ret = (self.run_descriptor)(&name);
Descriptor::decode(&ret)
}
2018-04-14 09:37:49 -07:00
fn global(&mut self, s: &str) {
let s = deindent(s);
let s = s.trim();
// Ensure a blank line between adjacent items, and ensure everything is
// terminated with a newline.
while !self.globals.ends_with("\n\n\n") {
2018-04-14 09:37:49 -07:00
self.globals.push_str("\n");
}
self.globals.push_str(s);
self.globals.push_str("\n");
2018-04-14 09:37:49 -07:00
}
fn add_wasm_pack_section(&mut self) {
if self.module_versions.len() == 0 {
return
}
#[derive(Serialize)]
struct WasmPackSchema<'a> {
version: &'a str,
modules: &'a [(String, String)],
}
let contents = serde_json::to_string(&WasmPackSchema {
version: "0.0.1",
modules: &self.module_versions,
}).unwrap();
let mut section = CustomSection::default();
*section.name_mut() = "__wasm_pack_unstable".to_string();
*section.payload_mut() = contents.into_bytes();
self.module.sections_mut().push(Section::Custom(section));
}
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
impl<'a, 'b> SubContext<'a, 'b> {
pub fn generate(&mut self) -> Result<(), Error> {
for f in self.program.exports.iter() {
self.generate_export(f)
.with_context(|_| {
format!("failed to generate bindings for Rust export `{}`",
f.function.name)
})?;
}
for f in self.program.imports.iter() {
self.generate_import(f)?;
}
2018-02-22 12:01:38 +01:00
for e in self.program.enums.iter() {
self.generate_enum(e);
}
for s in self.program.structs.iter() {
self.cx.exported_classes
.entry(s.name.clone())
.or_insert_with(Default::default)
.fields
.extend(s.fields.iter().map(|s| {
ClassField {
name: s.name.clone(),
readonly: s.readonly,
}
}));
}
Ok(())
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn generate_export(&mut self, export: &shared::Export)
-> Result<(), Error>
{
if let Some(ref class) = export.class {
2018-04-07 13:06:36 +05:45
return self.generate_export_for_class(class, export);
}
let descriptor = self.cx.describe(&export.function.name);
let (js, ts) = Js2Rust::new(&export.function.name, self.cx)
.process(descriptor.unwrap_function())?
.finish("function", &format!("wasm.{}", export.function.name));
self.cx.export(&export.function.name, &js);
self.cx.globals.push_str("\n");
self.cx.typescript.push_str("export ");
self.cx.typescript.push_str(&ts);
self.cx.typescript.push_str("\n");
Ok(())
}
fn generate_export_for_class(
&mut self,
class_name: &str,
export: &shared::Export,
) -> Result<(), Error> {
2018-04-15 15:36:59 +02:00
let wasm_name = shared::struct_function_export_name(class_name, &export.function.name);
let descriptor = self.cx.describe(&wasm_name);
let (js, ts) = Js2Rust::new(&export.function.name, self.cx)
.method(export.method)
.process(descriptor.unwrap_function())?
.finish("", &format!("wasm.{}", wasm_name));
let class = self.cx.exported_classes.entry(class_name.to_string())
.or_insert(ExportedClass::default());
2018-04-03 13:20:56 -07:00
if !export.method {
class.contents.push_str("static ");
class.typescript.push_str("static ");
}
2018-04-14 16:41:41 +02:00
let constructors: Vec<String> = self.program.exports
.iter()
.filter(|x| x.class == Some(class_name.to_string()))
2018-04-14 16:41:41 +02:00
.filter_map(|x| x.constructor.clone())
.collect();
class.constructor = match constructors.len() {
0 => None,
1 => Some(constructors[0].clone()),
x @ _ => bail!("there must be only one constructor, not {}", x),
2018-04-14 16:41:41 +02:00
};
2018-04-03 13:20:56 -07:00
class.contents.push_str(&export.function.name);
class.contents.push_str(&js);
class.contents.push_str("\n");
class.typescript.push_str(&ts);
class.typescript.push_str("\n");
Ok(())
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn generate_import(&mut self, import: &shared::Import) -> Result<(), Error> {
self.validate_import_module(import)?;
match import.kind {
shared::ImportKind::Function(ref f) => {
self.generate_import_function(import, f)
.with_context(|_| {
format!("failed to generate bindings for JS import `{}`",
f.function.name)
})?;
}
shared::ImportKind::Static(ref s) => {
self.generate_import_static(import, s)
.with_context(|_| {
format!("failed to generate bindings for JS import `{}`",
s.name)
})?;
}
shared::ImportKind::Type(_) => {}
}
Ok(())
}
fn validate_import_module(&mut self, import: &shared::Import)
-> Result<(), Error>
{
let version = match import.version {
Some(ref s) => s,
None => return Ok(()),
};
let module = match import.module {
Some(ref s) => s,
None => return Ok(()),
};
if module.starts_with("./") {
return Ok(())
}
let pkg = if module.starts_with("@") {
// Translate `@foo/bar/baz` to `@foo/bar` and `@foo/bar` to itself
let first_slash = match module.find('/') {
Some(i) => i,
None => {
bail!("packages starting with `@` must be of the form \
`@foo/bar`, but found: `{}`", module)
}
};
match module[first_slash + 1..].find('/') {
Some(i) => &module[..i],
None => module,
}
} else {
module.split('/').next().unwrap()
};
self.cx.module_versions.push((pkg.to_string(), version.clone()));
Ok(())
}
fn generate_import_static(
&mut self,
info: &shared::Import,
import: &shared::ImportStatic,
)
-> Result<(), Error>
{
// TODO: should support more types to import here
let obj = self.import_name(info, &import.name)?;
self.cx.expose_add_heap_object();
self.cx.export(&import.shim, &format!("
function() {{
return addHeapObject({});
}}
", obj));
Ok(())
}
fn generate_import_function(&mut self,
info: &shared::Import,
import: &shared::ImportFunction)
-> Result<(), Error>
{
Overhaul how type information gets to the CLI This commit is a complete overhaul of how the `#[wasm_bindgen]` macro communicates type information to the CLI tool, and it's done in a somewhat... unconventional fashion. Today we've got a problem where the generated JS needs to understand the types of each function exported or imported. This understanding is what enables it to generate the appropriate JS wrappers and such. We want to, however, be quite flexible and extensible in types that are supported across the boundary, which means that internally we rely on the trait system to resolve what's what. Communicating the type information historically was done by creating a four byte "descriptor" and using associated type projections to communicate that to the CLI tool. Unfortunately four bytes isn't a lot of space to cram information like arguments to a generic function, tuple types, etc. In general this just wasn't flexible enough and the way custom references were treated was also already a bit of a hack. This commit takes a radical step of creating a **descriptor function** for each function imported/exported. The really crazy part is that the `wasm-bindgen` CLI tool now embeds a wasm interpreter and executes these functions when the CLI tool is invoked. By allowing arbitrary functions to get executed it's now *much* easier to inform `wasm-bindgen` about complicated structures of types. Rest assured though that all these descriptor functions are automatically unexported and gc'd away, so this should not have any impact on binary sizes A new internal trait, `WasmDescribe`, is added to represent a description of all types, sort of like a serialization of the structure of a type that `wasm-bindgen` can understand. This works by calling a special exported function with a `u32` value a bunch of times. This means that when we run a descriptor we effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of integers can then be parsed into a rich `enum` for the JS generation to work with. This commit currently only retains feature parity with the previous implementation. I hope to soon solve issues like #123, #104, and #111 with this support.
2018-04-13 07:33:46 -07:00
let descriptor = self.cx.describe(&import.shim);
let target = match import.class {
2018-02-14 13:16:02 -08:00
Some(ref class) if import.js_new => {
format!("new {}", self.import_name(info, class)?)
2018-02-14 13:16:02 -08:00
}
Some(ref class) if import.method => {
let class = self.import_name(info, class)?;
2018-02-14 13:16:02 -08:00
let target = if let Some(ref g) = import.getter {
if import.structural {
format!("function() {{ return this.{}; }}", g)
} else {
self.cx.expose_get_inherited_descriptor();
format!(
"GetOwnOrInheritedPropertyDescriptor\
({}.prototype, '{}').get;",
class,
g,
)
}
2018-02-14 13:16:02 -08:00
} else if let Some(ref s) = import.setter {
if import.structural {
format!("function(y) {{ this.{} = y; }}", s)
} else {
self.cx.expose_get_inherited_descriptor();
format!(
"GetOwnOrInheritedPropertyDescriptor\
({}.prototype, '{}').set;",
class,
s,
)
}
2018-02-14 13:16:02 -08:00
} else {
if import.structural {
let nargs = descriptor.unwrap_function().arguments.len();
let mut s = format!("function(");
for i in 0..nargs - 1 {
if i > 0 {
drop(write!(s, ", "));
}
drop(write!(s, "x{}", i));
}
s.push_str(") { return this.");
s.push_str(&import.function.name);
s.push_str("(");
for i in 0..nargs - 1 {
if i > 0 {
drop(write!(s, ", "));
}
drop(write!(s, "x{}", i));
}
s.push_str("); }");
s
} else {
format!("{}.prototype.{}", class, import.function.name)
}
2018-02-14 13:16:02 -08:00
};
2018-04-14 09:37:49 -07:00
self.cx.global(&format!("
2018-02-14 13:16:02 -08:00
const {}_target = {};
", import.shim, target));
format!("{}_target.call", import.shim)
}
Some(ref class) => {
let class = self.import_name(info, class)?;
2018-04-14 09:37:49 -07:00
self.cx.global(&format!("
const {}_target = {}.{};
", import.shim, class, import.function.name));
format!("{}_target", import.shim)
}
None => {
let name = self.import_name(info, &import.function.name)?;
if name.contains(".") {
2018-04-14 09:37:49 -07:00
self.cx.global(&format!("
const {}_target = {};
", import.shim, name));
format!("{}_target", import.shim)
} else {
name
}
}
};
let js = Rust2Js::new(self.cx)
.catch(import.catch)
.process(descriptor.unwrap_function())?
.finish(&target);
self.cx.export(&import.shim, &js);
Ok(())
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
2018-02-22 12:01:38 +01:00
fn generate_enum(&mut self, enum_: &shared::Enum) {
2018-02-22 12:01:38 +01:00
let mut variants = String::new();
for variant in enum_.variants.iter() {
variants.push_str(&format!("{}:{},", variant.name, variant.value));
2018-02-22 12:01:38 +01:00
}
self.cx.export(&enum_.name, &format!("Object.freeze({{ {} }})", variants));
2018-02-23 17:30:18 +01:00
self.cx.typescript.push_str(&format!("export enum {} {{", enum_.name));
variants.clear();
for variant in enum_.variants.iter() {
variants.push_str(&format!("{},", variant.name));
}
self.cx.typescript.push_str(&variants);
self.cx.typescript.push_str("}\n");
2018-02-22 12:01:38 +01:00
}
fn import_name(&mut self, import: &shared::Import, item: &str)
-> Result<String, Error>
{
if let Some(ref module) = import.module {
2018-04-11 14:22:20 +05:45
if self.cx.config.no_modules {
bail!("import from `{}` module not allowed with `--no-modules`; \
use `--nodejs` or `--browser` instead", module);
2018-04-11 14:22:20 +05:45
}
let name = import.js_namespace.as_ref().map(|s| &**s).unwrap_or(item);
if self.cx.imported_names.insert(name.to_string()) {
if self.cx.config.nodejs {
self.cx.imports.push_str(&format!("\
const {} = require('{}').{};\n\
", name, module, name));
} else {
self.cx.imports.push_str(&format!("\
import {{ {} }} from '{}';\n\
", name, module));
}
}
}
Ok(match import.js_namespace {
Some(ref s) => format!("{}.{}", s, item),
None => item.to_string(),
})
}
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
fn indent(s: &str) -> String {
let mut ret = String::new();
for line in s.lines() {
ret.push_str(" ");
ret.push_str(line);
ret.push_str("\n");
}
return ret
}
fn deindent(s: &str) -> String {
let amt_to_strip = s.lines()
.filter(|l| !l.trim().is_empty())
.map(|s| s.len() - s.trim_left().len())
.min()
.unwrap_or(0);
let mut ret = String::new();
for line in s.lines() {
if !line.trim().is_empty() {
ret.push_str(&line[amt_to_strip..]);
}
ret.push_str("\n");
}
ret
}