Alex Crichton a2aa28e4d3 Add a #[wasm_bindgen(start)] attribute
This commit adds a new attribute to `#[wasm_bindgen]`: `start`. The
`start` attribute can be used to indicate that a function should be
executed when the module is loaded, configuring the `start` function of
the wasm executable. While this doesn't necessarily literally configure
the `start` section, it does its best!

Only one crate in a crate graph may indicate `#[wasm_bindgen(start)]`,
so it's not recommended to be used in libraries but only end-user
applications. Currently this still must be used with the `crate-type =
["cdylib"]` annotation in `Cargo.toml`.

The implementation here is somewhat tricky because of the circular
dependency between our generated JS and the wasm file that we emit. This
circular dependency makes running initialization routines (like the
`start` shim) particularly fraught with complications because one may
need to run before the other but bundlers may not necessarily respect
it. Workarounds have been implemented for various emission strategies,
for example calling the start function directly after exports are wired
up with `--no-modules` and otherwise working around what appears to be
a Webpack bug with initializers running in a different order than we'd
like. In any case, this in theory doesn't show up to the end user!

Closes #74
2018-11-28 22:11:15 -08:00

379 lines
11 KiB
Rust

use std::cell::RefCell;
use std::collections::HashMap;
use proc_macro2::{Ident, Span};
use ast;
use Diagnostic;
pub fn encode(program: &ast::Program) -> Result<Vec<u8>, Diagnostic> {
let mut e = Encoder::new();
let i = Interner::new();
shared_program(program, &i)?.encode(&mut e);
Ok(e.finish())
}
struct Interner {
map: RefCell<HashMap<Ident, String>>,
}
impl Interner {
fn new() -> Interner {
Interner {
map: RefCell::new(HashMap::new()),
}
}
fn intern(&self, s: &Ident) -> &str {
let mut map = self.map.borrow_mut();
if let Some(s) = map.get(s) {
return unsafe { &*(&**s as *const str) };
}
map.insert(s.clone(), s.to_string());
unsafe { &*(&*map[s] as *const str) }
}
fn intern_str(&self, s: &str) -> &str {
self.intern(&Ident::new(s, Span::call_site()))
}
}
fn shared_program<'a>(
prog: &'a ast::Program,
intern: &'a Interner,
) -> Result<Program<'a>, Diagnostic> {
Ok(Program {
exports: prog
.exports
.iter()
.map(|a| shared_export(a, intern))
.collect(),
structs: prog
.structs
.iter()
.map(|a| shared_struct(a, intern))
.collect(),
enums: prog.enums.iter().map(|a| shared_enum(a, intern)).collect(),
imports: prog
.imports
.iter()
.map(|a| shared_import(a, intern))
.collect::<Result<Vec<_>, _>>()?,
typescript_custom_sections: prog
.typescript_custom_sections
.iter()
.map(|x| -> &'a str { &x })
.collect(),
// version: shared::version(),
// schema_version: shared::SCHEMA_VERSION.to_string(),
})
}
fn shared_export<'a>(export: &'a ast::Export, intern: &'a Interner) -> Export<'a> {
let (method, consumed) = match export.method_self {
Some(ast::MethodSelf::ByValue) => (true, true),
Some(_) => (true, false),
None => (false, false),
};
Export {
class: export.js_class.as_ref().map(|s| &**s),
method,
consumed,
is_constructor: export.is_constructor,
function: shared_function(&export.function, intern),
comments: export.comments.iter().map(|s| &**s).collect(),
start: export.start,
}
}
fn shared_function<'a>(func: &'a ast::Function, _intern: &'a Interner) -> Function<'a> {
Function { name: &func.name }
}
fn shared_enum<'a>(e: &'a ast::Enum, intern: &'a Interner) -> Enum<'a> {
Enum {
name: intern.intern(&e.name),
variants: e
.variants
.iter()
.map(|v| shared_variant(v, intern))
.collect(),
comments: e.comments.iter().map(|s| &**s).collect(),
}
}
fn shared_variant<'a>(v: &'a ast::Variant, intern: &'a Interner) -> EnumVariant<'a> {
EnumVariant {
name: intern.intern(&v.name),
value: v.value,
}
}
fn shared_import<'a>(i: &'a ast::Import, intern: &'a Interner) -> Result<Import<'a>, Diagnostic> {
Ok(Import {
module: i.module.as_ref().map(|s| &**s),
js_namespace: i.js_namespace.as_ref().map(|s| intern.intern(s)),
kind: shared_import_kind(&i.kind, intern)?,
})
}
fn shared_import_kind<'a>(
i: &'a ast::ImportKind,
intern: &'a Interner,
) -> Result<ImportKind<'a>, Diagnostic> {
Ok(match i {
ast::ImportKind::Function(f) => ImportKind::Function(shared_import_function(f, intern)?),
ast::ImportKind::Static(f) => ImportKind::Static(shared_import_static(f, intern)),
ast::ImportKind::Type(f) => ImportKind::Type(shared_import_type(f, intern)),
ast::ImportKind::Enum(f) => ImportKind::Enum(shared_import_enum(f, intern)),
})
}
fn shared_import_function<'a>(
i: &'a ast::ImportFunction,
intern: &'a Interner,
) -> Result<ImportFunction<'a>, Diagnostic> {
let method = match &i.kind {
ast::ImportFunctionKind::Method { class, kind, .. } => {
let kind = match kind {
ast::MethodKind::Constructor => MethodKind::Constructor,
ast::MethodKind::Operation(ast::Operation { is_static, kind }) => {
let is_static = *is_static;
let kind = match kind {
ast::OperationKind::Regular => OperationKind::Regular,
ast::OperationKind::Getter(g) => {
let g = g.as_ref().map(|g| intern.intern(g));
OperationKind::Getter(g.unwrap_or_else(|| i.infer_getter_property()))
}
ast::OperationKind::Setter(s) => {
let s = s.as_ref().map(|s| intern.intern(s));
OperationKind::Setter(match s {
Some(s) => s,
None => intern.intern_str(&i.infer_setter_property()?),
})
}
ast::OperationKind::IndexingGetter => OperationKind::IndexingGetter,
ast::OperationKind::IndexingSetter => OperationKind::IndexingSetter,
ast::OperationKind::IndexingDeleter => OperationKind::IndexingDeleter,
};
MethodKind::Operation(Operation { is_static, kind })
}
};
Some(MethodData { class, kind })
}
ast::ImportFunctionKind::Normal => None,
};
Ok(ImportFunction {
shim: intern.intern(&i.shim),
catch: i.catch,
method,
structural: i.structural,
function: shared_function(&i.function, intern),
variadic: i.variadic,
})
}
fn shared_import_static<'a>(i: &'a ast::ImportStatic, intern: &'a Interner) -> ImportStatic<'a> {
ImportStatic {
name: &i.js_name,
shim: intern.intern(&i.shim),
}
}
fn shared_import_type<'a>(i: &'a ast::ImportType, intern: &'a Interner) -> ImportType<'a> {
ImportType {
name: &i.js_name,
instanceof_shim: &i.instanceof_shim,
vendor_prefixes: i.vendor_prefixes.iter().map(|x| intern.intern(x)).collect(),
}
}
fn shared_import_enum<'a>(_i: &'a ast::ImportEnum, _intern: &'a Interner) -> ImportEnum {
ImportEnum {}
}
fn shared_struct<'a>(s: &'a ast::Struct, intern: &'a Interner) -> Struct<'a> {
Struct {
name: &s.js_name,
fields: s
.fields
.iter()
.map(|s| shared_struct_field(s, intern))
.collect(),
comments: s.comments.iter().map(|s| &**s).collect(),
}
}
fn shared_struct_field<'a>(s: &'a ast::StructField, intern: &'a Interner) -> StructField<'a> {
StructField {
name: intern.intern(&s.name),
readonly: s.readonly,
comments: s.comments.iter().map(|s| &**s).collect(),
}
}
trait Encode {
fn encode(&self, dst: &mut Encoder);
}
struct Encoder {
dst: Vec<u8>,
}
impl Encoder {
fn new() -> Encoder {
Encoder {
dst: vec![0, 0, 0, 0],
}
}
fn finish(mut self) -> Vec<u8> {
let len = self.dst.len() - 4;
self.dst[0] = (len >> 0) as u8;
self.dst[1] = (len >> 8) as u8;
self.dst[2] = (len >> 16) as u8;
self.dst[3] = (len >> 24) as u8;
self.dst
}
fn byte(&mut self, byte: u8) {
self.dst.push(byte);
}
}
impl Encode for bool {
fn encode(&self, dst: &mut Encoder) {
dst.byte(*self as u8);
}
}
impl Encode for u32 {
fn encode(&self, dst: &mut Encoder) {
let mut val = *self;
while (val >> 7) != 0 {
dst.byte((val as u8) | 0x80);
val >>= 7;
}
assert_eq!(val >> 7, 0);
dst.byte(val as u8);
}
}
impl Encode for usize {
fn encode(&self, dst: &mut Encoder) {
assert!(*self <= u32::max_value() as usize);
(*self as u32).encode(dst);
}
}
impl<'a> Encode for &'a [u8] {
fn encode(&self, dst: &mut Encoder) {
self.len().encode(dst);
dst.dst.extend_from_slice(*self);
}
}
impl<'a> Encode for &'a str {
fn encode(&self, dst: &mut Encoder) {
self.as_bytes().encode(dst);
}
}
impl<T: Encode> Encode for Vec<T> {
fn encode(&self, dst: &mut Encoder) {
self.len().encode(dst);
for item in self {
item.encode(dst);
}
}
}
impl<T: Encode> Encode for Option<T> {
fn encode(&self, dst: &mut Encoder) {
match self {
None => dst.byte(0),
Some(val) => {
dst.byte(1);
val.encode(dst)
}
}
}
}
macro_rules! encode_struct {
($name:ident ($($lt:tt)*) $($field:ident: $ty:ty,)*) => {
struct $name $($lt)* {
$($field: $ty,)*
}
impl $($lt)* Encode for $name $($lt)* {
fn encode(&self, _dst: &mut Encoder) {
$(self.$field.encode(_dst);)*
}
}
}
}
macro_rules! encode_enum {
($name:ident ($($lt:tt)*) $($fields:tt)*) => (
enum $name $($lt)* { $($fields)* }
impl$($lt)* Encode for $name $($lt)* {
fn encode(&self, dst: &mut Encoder) {
use self::$name::*;
encode_enum!(@arms self dst (0) () $($fields)*)
}
}
);
(@arms $me:ident $dst:ident ($cnt:expr) ($($arms:tt)*)) => (
encode_enum!(@expr match $me { $($arms)* })
);
(@arms $me:ident $dst:ident ($cnt:expr) ($($arms:tt)*) $name:ident, $($rest:tt)*) => (
encode_enum!(
@arms
$me
$dst
($cnt+1)
($($arms)* $name => $dst.byte($cnt),)
$($rest)*
)
);
(@arms $me:ident $dst:ident ($cnt:expr) ($($arms:tt)*) $name:ident($t:ty), $($rest:tt)*) => (
encode_enum!(
@arms
$me
$dst
($cnt+1)
($($arms)* $name(val) => { $dst.byte($cnt); val.encode($dst) })
$($rest)*
)
);
(@expr $e:expr) => ($e);
}
macro_rules! encode_api {
() => ();
(struct $name:ident<'a> { $($fields:tt)* } $($rest:tt)*) => (
encode_struct!($name (<'a>) $($fields)*);
encode_api!($($rest)*);
);
(struct $name:ident { $($fields:tt)* } $($rest:tt)*) => (
encode_struct!($name () $($fields)*);
encode_api!($($rest)*);
);
(enum $name:ident<'a> { $($variants:tt)* } $($rest:tt)*) => (
encode_enum!($name (<'a>) $($variants)*);
encode_api!($($rest)*);
);
(enum $name:ident { $($variants:tt)* } $($rest:tt)*) => (
encode_enum!($name () $($variants)*);
encode_api!($($rest)*);
);
}
shared_api!(encode_api);