Alex Crichton 0160f6af45 Fix handling of u32 between Rust and JS
All numbers in WebAssembly are signed and then each operation on them
may optionally have an unsigned version. This means that when we pass
large signed numbers to JS they actually show up as large negative
numbers even though JS numbers can faithfully represent the type.

This is fixed by adding `>>>0` in a few locations in the generated
bindings to coerce the JS value into an unsigned value.

Closes #1388
2019-03-27 13:37:14 -07:00

846 lines
30 KiB
Rust

use crate::descriptor::{Descriptor, Function};
use crate::js::Context;
use failure::{bail, Error};
/// Helper struct for manufacturing a shim in JS used to translate JS types to
/// Rust, aka pass from JS back into Rust
pub struct Js2Rust<'a, 'b: 'a> {
cx: &'a mut Context<'b>,
/// Arguments passed to the invocation of the wasm function, aka things that
/// are only numbers.
rust_arguments: Vec<String>,
/// Arguments and their types to the JS shim.
pub js_arguments: Vec<(String, String)>,
/// Conversions that happen before we invoke the wasm function, such as
/// converting a string to a ptr/length pair.
prelude: String,
/// "Destructors" or cleanup that must happen after the wasm function
/// finishes. This is scheduled in a `finally` block.
finally: String,
/// Index of the next argument for unique name generation purposes.
arg_idx: usize,
/// Typescript expression representing the type of the return value of this
/// function.
ret_ty: String,
/// Expression used to generate the return value. The string "RET" in this
/// expression is replaced with the actual wasm invocation eventually.
ret_expr: String,
/// Name of the JS shim/function that we're generating, primarily for
/// TypeScript right now.
js_name: String,
/// whether or not this generated function body will act like a constructor,
/// meaning it doesn't actually return something but rather assigns to
/// `this`
///
/// The string value here is the class that this should be a constructor
/// for.
constructor: Option<String>,
/// metadata for anyref transformations
anyref_args: Vec<(usize, bool)>,
ret_anyref: bool,
}
pub enum ExportedShim<'a> {
Named(&'a str),
TableElement(&'a mut u32),
}
impl<'a, 'b> Js2Rust<'a, 'b> {
pub fn new(js_name: &str, cx: &'a mut Context<'b>) -> Js2Rust<'a, 'b> {
Js2Rust {
cx,
js_name: js_name.to_string(),
rust_arguments: Vec::new(),
js_arguments: Vec::new(),
prelude: String::new(),
finally: String::new(),
arg_idx: 0,
ret_ty: String::new(),
ret_expr: String::new(),
constructor: None,
anyref_args: Vec::new(),
ret_anyref: false,
}
}
/// Generates all bindings necessary for the signature in `Function`,
/// creating necessary argument conversions and return value processing.
pub fn process<'c, I>(
&mut self,
function: &Function,
opt_arg_names: I,
) -> Result<&mut Self, Error>
where
I: Into<Option<&'c Vec<String>>>,
{
if let Some(arg_names) = opt_arg_names.into() {
for (arg, arg_name) in function.arguments.iter().zip(arg_names) {
self.argument(arg, arg_name.as_str())?;
}
} else {
for arg in function.arguments.iter() {
self.argument(arg, None)?;
}
}
self.ret(&function.ret)?;
Ok(self)
}
pub fn constructor(&mut self, class: Option<&str>) -> &mut Self {
self.constructor = class.map(|s| s.to_string());
self
}
/// Flag this shim as a method call into Rust, so the first Rust argument
/// passed should be `this.ptr`.
pub fn method(&mut self, method: bool, consumed: bool) -> &mut Self {
if method {
if self.cx.config.debug {
self.prelude(
"if (this.ptr === 0) {
throw new Error('Attempt to use a moved value');
}",
);
}
if consumed {
self.prelude(
"\
const ptr = this.ptr;\n\
this.ptr = 0;\n\
",
);
self.rust_arguments.insert(0, "ptr".to_string());
} else {
self.rust_arguments.insert(0, "this.ptr".to_string());
}
}
self
}
/// Add extra processing to the prelude of this shim.
pub fn prelude(&mut self, s: &str) -> &mut Self {
for line in s.lines() {
self.prelude.push_str(line);
self.prelude.push_str("\n");
}
self
}
/// Add extra processing to the finally block of this shim.
pub fn finally(&mut self, s: &str) -> &mut Self {
for line in s.lines() {
self.finally.push_str(line);
self.finally.push_str("\n");
}
self
}
/// Add an Rust argument to be passed manually.
pub fn rust_argument(&mut self, s: &str) -> &mut Self {
self.rust_arguments.push(s.to_string());
self
}
fn abi_arg(&mut self, opt_arg_name: Option<&str>) -> String {
let ret = if let Some(x) = opt_arg_name {
x.into()
} else {
format!("arg{}", self.arg_idx)
};
self.arg_idx += 1;
ret
}
pub fn argument<'c, I>(&mut self, arg: &Descriptor, opt_arg_name: I) -> Result<&mut Self, Error>
where
I: Into<Option<&'c str>>,
{
let i = self.arg_idx;
let name = self.abi_arg(opt_arg_name.into());
let (arg, optional) = match arg {
Descriptor::Option(t) => (&**t, true),
_ => (arg, false),
};
if let Some(kind) = arg.vector_kind() {
self.js_arguments
.push((name.clone(), kind.js_ty().to_string()));
let func = self.cx.pass_to_wasm_function(kind)?;
let val = if optional {
self.cx.expose_is_like_none();
format!("isLikeNone({}) ? [0, 0] : {}({})", name, func, name)
} else {
format!("{}({})", func, name)
};
self.prelude(&format!(
"const ptr{i} = {val};\nconst len{i} = WASM_VECTOR_LEN;",
i = i,
val = val,
));
if arg.is_by_ref() || arg.is_clamped_by_ref() {
if optional {
bail!("optional slices aren't currently supported");
}
if arg.is_mut_ref() {
let get = self.cx.memview_function(kind);
self.finally(&format!(
"\
{arg}.set({get}().subarray(\
ptr{i} / {size}, \
ptr{i} / {size} + len{i}\
));\n\
",
i = i,
arg = name,
get = get,
size = kind.size()
));
}
self.finally(&format!(
"\
wasm.__wbindgen_free(ptr{i}, len{i} * {size});\n\
",
i = i,
size = kind.size()
));
self.cx.require_internal_export("__wbindgen_free")?;
}
self.rust_arguments.push(format!("ptr{}", i));
self.rust_arguments.push(format!("len{}", i));
return Ok(self);
}
if arg.is_anyref() {
self.js_arguments.push((name.clone(), "any".to_string()));
if self.cx.config.anyref {
if optional {
self.cx.expose_add_to_anyref_table()?;
self.cx.expose_is_like_none();
self.rust_arguments
.push(format!("isLikeNone({0}) ? 0 : addToAnyrefTable({0})", name));
} else {
self.anyref_args.push((self.rust_arguments.len(), true));
self.rust_arguments.push(name);
}
} else {
self.cx.expose_add_heap_object();
if optional {
self.cx.expose_is_like_none();
self.rust_arguments
.push(format!("isLikeNone({0}) ? 0 : addHeapObject({0})", name));
} else {
self.rust_arguments.push(format!("addHeapObject({})", name));
}
}
return Ok(self);
}
if optional {
self.cx.expose_is_like_none();
if arg.is_wasm_native() {
self.js_arguments
.push((name.clone(), "number | undefined".to_string()));
if self.cx.config.debug {
self.cx.expose_assert_num();
self.prelude(&format!(
"
if (!isLikeNone({0})) {{
_assertNum({0});
}}
",
name
));
}
self.rust_arguments.push(format!("!isLikeNone({0})", name));
self.rust_arguments
.push(format!("isLikeNone({0}) ? 0 : {0}", name));
return Ok(self);
}
if arg.is_abi_as_u32() {
self.js_arguments
.push((name.clone(), "number | undefined".to_string()));
if self.cx.config.debug {
self.cx.expose_assert_num();
self.prelude(&format!(
"
if (!isLikeNone({0})) {{
_assertNum({0});
}}
",
name
));
}
self.rust_arguments
.push(format!("isLikeNone({0}) ? 0xFFFFFF : {0}", name));
return Ok(self);
}
if let Some(signed) = arg.get_64() {
let f = if signed {
self.cx.expose_int64_cvt_shim()
} else {
self.cx.expose_uint64_cvt_shim()
};
self.cx.expose_uint32_memory();
self.js_arguments
.push((name.clone(), "BigInt | undefined".to_string()));
self.prelude(&format!(
"
{f}[0] = isLikeNone({name}) ? BigInt(0) : {name};
const low{i} = isLikeNone({name}) ? 0 : u32CvtShim[0];
const high{i} = isLikeNone({name}) ? 0 : u32CvtShim[1];
",
i = i,
f = f,
name = name,
));
self.rust_arguments.push(format!("!isLikeNone({})", name));
self.rust_arguments.push(format!("0"));
self.rust_arguments.push(format!("low{}", i));
self.rust_arguments.push(format!("high{}", i));
return Ok(self);
}
match *arg {
Descriptor::Boolean => {
self.js_arguments
.push((name.clone(), "boolean | undefined".to_string()));
if self.cx.config.debug {
self.cx.expose_assert_bool();
self.prelude(&format!(
"
if (!isLikeNone({0})) {{
_assertBoolean({0});
}}
",
name,
));
}
self.rust_arguments
.push(format!("isLikeNone({0}) ? 0xFFFFFF : {0} ? 1 : 0", name));
}
Descriptor::Char => {
self.js_arguments
.push((name.clone(), "string | undefined".to_string()));
self.rust_arguments
.push(format!("isLikeNone({0}) ? 0xFFFFFF : {0}.codePointAt(0)", name));
}
Descriptor::Enum { hole } => {
self.js_arguments
.push((name.clone(), "number | undefined".to_string()));
self.rust_arguments
.push(format!("isLikeNone({0}) ? {1} : {0}", name, hole));
}
Descriptor::RustStruct(ref s) => {
self.js_arguments
.push((name.clone(), format!("{} | undefined", s)));
self.prelude(&format!("let ptr{} = 0;", i));
self.prelude(&format!("if (!isLikeNone({0})) {{", name));
self.assert_class(&name, s);
self.assert_not_moved(&name);
self.prelude(&format!("ptr{} = {}.ptr;", i, name));
self.prelude(&format!("{}.ptr = 0;", name));
self.prelude("}");
self.rust_arguments.push(format!("ptr{}", i));
}
_ => bail!(
"unsupported optional argument type for calling Rust function from JS: {:?}",
arg
),
}
return Ok(self);
}
if let Some(s) = arg.rust_struct() {
self.js_arguments.push((name.clone(), s.to_string()));
self.assert_class(&name, s);
self.assert_not_moved(&name);
if arg.is_by_ref() {
self.rust_arguments.push(format!("{}.ptr", name));
} else {
self.prelude(&format!("const ptr{} = {}.ptr;", i, name));
self.prelude(&format!("{}.ptr = 0;", name));
self.rust_arguments.push(format!("ptr{}", i));
}
return Ok(self);
}
if arg.number().is_some() {
self.js_arguments.push((name.clone(), "number".to_string()));
if self.cx.config.debug {
self.cx.expose_assert_num();
self.prelude(&format!("_assertNum({});", name));
}
self.rust_arguments.push(name);
return Ok(self);
}
if let Some(signed) = arg.get_64() {
let f = if signed {
self.cx.expose_int64_cvt_shim()
} else {
self.cx.expose_uint64_cvt_shim()
};
self.cx.expose_uint32_memory();
self.js_arguments.push((name.clone(), "BigInt".to_string()));
self.prelude(&format!(
"
{f}[0] = {name};
const low{i} = u32CvtShim[0];
const high{i} = u32CvtShim[1];
",
i = i,
f = f,
name = name,
));
self.rust_arguments.push(format!("low{}", i));
self.rust_arguments.push(format!("high{}", i));
return Ok(self);
}
if arg.is_ref_anyref() {
self.js_arguments.push((name.clone(), "any".to_string()));
if self.cx.config.anyref {
self.anyref_args.push((self.rust_arguments.len(), false));
self.rust_arguments.push(name);
} else {
// the "stack-ful" nature means that we're always popping from the
// stack, and make sure that we actually clear our reference to
// allow stale values to get GC'd
self.cx.expose_borrowed_objects();
self.cx.expose_global_stack_pointer();
self.finally("heap[stack_pointer++] = undefined;");
self.rust_arguments
.push(format!("addBorrowedObject({})", name));
}
return Ok(self);
}
match *arg {
Descriptor::Boolean => {
self.js_arguments
.push((name.clone(), "boolean".to_string()));
if self.cx.config.debug {
self.cx.expose_assert_bool();
self.prelude(&format!(
"\
_assertBoolean({name});\n\
",
name = name
));
}
self.rust_arguments.push(format!("{}", name));
}
Descriptor::Char => {
self.js_arguments.push((name.clone(), "string".to_string()));
self.rust_arguments.push(format!("{}.codePointAt(0)", name))
}
_ => bail!(
"unsupported argument type for calling Rust function from JS: {:?}",
arg
),
}
Ok(self)
}
pub fn ret(&mut self, ty: &Descriptor) -> Result<&mut Self, Error> {
if let Some(name) = ty.rust_struct() {
match &self.constructor {
Some(class) if class == name => {
self.ret_expr = format!("this.ptr = RET;");
if self.cx.config.weak_refs {
self.ret_expr.push_str(&format!(
"\
addCleanup(this, this.ptr, free{});
",
name
));
}
}
Some(class) => bail!("constructor for `{}` cannot return `{}`", class, name),
None => {
self.ret_ty = name.to_string();
self.cx.require_class_wrap(name);
self.ret_expr = format!("return {name}.__wrap(RET);", name = name);
}
}
return Ok(self);
}
if self.constructor.is_some() {
bail!("constructor functions must return a Rust structure")
}
if let Descriptor::Unit = ty {
self.ret_ty = "void".to_string();
self.ret_expr = format!("return RET;");
return Ok(self);
}
let (ty, optional) = match ty {
Descriptor::Option(t) => (&**t, true),
_ => (ty, false),
};
if let Some(ty) = ty.vector_kind() {
self.ret_ty = ty.js_ty().to_string();
let f = self.cx.expose_get_vector_from_wasm(ty)?;
self.cx.expose_global_argument_ptr()?;
self.cx.expose_uint32_memory();
self.cx.require_internal_export("__wbindgen_free")?;
self.prelude("const retptr = globalArgumentPtr();");
self.rust_arguments.insert(0, "retptr".to_string());
self.ret_expr = format!(
"\
RET;\n\
const mem = getUint32Memory();\n\
const rustptr = mem[retptr / 4];\n\
const rustlen = mem[retptr / 4 + 1];\n\
{guard}
const realRet = {}(rustptr, rustlen).slice();\n\
wasm.__wbindgen_free(rustptr, rustlen * {});\n\
return realRet;\n\
",
f,
ty.size(),
guard = if optional {
"if (rustptr === 0) return;"
} else {
""
},
);
return Ok(self);
}
// No need to worry about `optional` here, the abi representation means
// that `takeObject` will naturally pluck out `undefined`.
if ty.is_anyref() {
self.ret_ty = "any".to_string();
self.ret_expr = format!("return {};", self.cx.take_object("RET"));
self.ret_anyref = true;
return Ok(self);
}
if optional {
if ty.is_wasm_native() {
self.ret_ty = "number | undefined".to_string();
self.cx.expose_global_argument_ptr()?;
self.cx.expose_uint32_memory();
match ty {
Descriptor::I32 => self.cx.expose_int32_memory(),
Descriptor::U32 => (),
Descriptor::F32 => self.cx.expose_f32_memory(),
Descriptor::F64 => self.cx.expose_f64_memory(),
_ => (),
};
self.prelude("const retptr = globalArgumentPtr();");
self.rust_arguments.insert(0, "retptr".to_string());
self.ret_expr = format!(
"
RET;
const present = getUint32Memory()[retptr / 4];
const value = {mem}[retptr / {size} + 1];
return present === 0 ? undefined : value;
",
size = match ty {
Descriptor::I32 => 4,
Descriptor::U32 => 4,
Descriptor::F32 => 4,
Descriptor::F64 => 8,
_ => unreachable!(),
},
mem = match ty {
Descriptor::I32 => "getInt32Memory()",
Descriptor::U32 => "getUint32Memory()",
Descriptor::F32 => "getFloat32Memory()",
Descriptor::F64 => "getFloat64Memory()",
_ => unreachable!(),
}
);
return Ok(self);
}
if ty.is_abi_as_u32() {
self.ret_ty = "number | undefined".to_string();
self.ret_expr = "
const ret = RET;
return ret === 0xFFFFFF ? undefined : ret;
"
.to_string();
return Ok(self);
}
if let Some(signed) = ty.get_64() {
self.ret_ty = "BigInt | undefined".to_string();
self.cx.expose_global_argument_ptr()?;
let f = if signed {
self.cx.expose_int64_memory();
"getInt64Memory"
} else {
self.cx.expose_uint64_memory();
"getUint64Memory"
};
self.prelude("const retptr = globalArgumentPtr();");
self.rust_arguments.insert(0, "retptr".to_string());
self.ret_expr = format!(
"
RET;
const present = getUint32Memory()[retptr / 4];
const value = {}()[retptr / 8 + 1];
return present === 0 ? undefined : value;
",
f
);
return Ok(self);
}
match *ty {
Descriptor::Boolean => {
self.ret_ty = "boolean | undefined".to_string();
self.ret_expr = "
const ret = RET;
return ret === 0xFFFFFF ? undefined : ret !== 0;
"
.to_string();
return Ok(self);
}
Descriptor::Char => {
self.ret_ty = "string | undefined".to_string();
self.ret_expr = "
const ret = RET;
return ret === 0xFFFFFF ? undefined : String.fromCodePoint(ret);
".to_string();
return Ok(self);
}
Descriptor::Enum { hole } => {
self.ret_ty = "number | undefined".to_string();
self.ret_expr = format!(
"
const ret = RET;
return ret === {} ? undefined : ret;
",
hole
);
return Ok(self);
}
Descriptor::RustStruct(ref name) => {
self.ret_ty = format!("{} | undefined", name);
self.cx.require_class_wrap(name);
self.ret_expr = format!(
"
const ptr = RET;
return ptr === 0 ? undefined : {}.__wrap(ptr);
",
name,
);
return Ok(self);
}
_ => bail!(
"unsupported optional return type for calling Rust function from JS: {:?}",
ty
),
};
}
if ty.is_ref_anyref() {
self.ret_ty = "any".to_string();
self.cx.expose_get_object();
self.ret_expr = format!("return getObject(RET);");
return Ok(self);
}
if ty.is_by_ref() {
bail!("cannot return references from Rust to JS yet")
}
if let Some(name) = ty.rust_struct() {
self.ret_ty = name.to_string();
self.cx.require_class_wrap(name);
self.ret_expr = format!("return {name}.__wrap(RET);", name = name);
return Ok(self);
}
if let Some(num) = ty.number() {
self.ret_ty = "number".to_string();
if num.is_u32() {
self.ret_expr = format!("return RET >>> 0;");
} else {
self.ret_expr = format!("return RET;");
}
return Ok(self);
}
if let Some(signed) = ty.get_64() {
self.ret_ty = "BigInt".to_string();
self.cx.expose_global_argument_ptr()?;
let f = if signed {
self.cx.expose_int64_memory();
"getInt64Memory"
} else {
self.cx.expose_uint64_memory();
"getUint64Memory"
};
self.prelude("const retptr = globalArgumentPtr();");
self.rust_arguments.insert(0, "retptr".to_string());
self.ret_expr = format!(
"\
RET;\n\
return {}()[retptr / 8];\n\
",
f
);
return Ok(self);
}
match *ty {
Descriptor::Boolean => {
self.ret_ty = "boolean".to_string();
self.ret_expr = format!("return (RET) !== 0;");
}
Descriptor::Char => {
self.ret_ty = "string".to_string();
self.ret_expr = format!("return String.fromCodePoint(RET);")
}
_ => bail!(
"unsupported return type for calling Rust function from JS: {:?}",
ty
),
}
Ok(self)
}
pub fn js_doc_comments(&self) -> String {
let mut ret: String = self
.js_arguments
.iter()
.map(|a| format!("@param {{{}}} {}\n", a.1, a.0))
.collect();
ret.push_str(&format!("@returns {{{}}}", self.ret_ty));
ret
}
/// Generate the actual function.
///
/// The `prefix` specified is typically the string "function" but may be
/// different for classes. The `invoc` is the function expression that we're
/// invoking, like `wasm.bar` or `this.f`.
///
/// Returns two strings, the first of which is the JS expression for the
/// generated function shim and the second is a TypeScript signature of the
/// JS expression.
pub fn finish(
&mut self,
prefix: &str,
invoc: &str,
exported_shim: ExportedShim,
) -> (String, String, String) {
let js_args = self
.js_arguments
.iter()
.map(|s| &s.0[..])
.collect::<Vec<_>>()
.join(", ");
let mut js = format!("{}({}) {{\n", prefix, js_args);
js.push_str(&self.prelude);
let rust_args = self.rust_arguments.join(", ");
let invoc = self
.ret_expr
.replace("RET", &format!("{}({})", invoc, rust_args));
let invoc = if self.finally.len() == 0 {
invoc
} else {
format!(
"\
try {{\n\
{}
\n}} finally {{\n\
{}
}}\n\
",
&invoc, &self.finally,
)
};
js.push_str(&invoc);
js.push_str("\n}");
let ts_args = self
.js_arguments
.iter()
.map(|s| format!("{}: {}", s.0, s.1))
.collect::<Vec<_>>()
.join(", ");
let mut ts = if prefix.is_empty() {
format!("{}({})", self.js_name, ts_args)
} else {
format!("{} {}({})", prefix, self.js_name, ts_args)
};
if self.constructor.is_none() {
ts.push_str(": ");
ts.push_str(&self.ret_ty);
}
ts.push(';');
if self.ret_anyref || self.anyref_args.len() > 0 {
match exported_shim {
ExportedShim::Named(name) => {
self.cx
.anyref
.export_xform(name, &self.anyref_args, self.ret_anyref);
}
ExportedShim::TableElement(idx) => {
*idx = self.cx.anyref.table_element_xform(
*idx,
&self.anyref_args,
self.ret_anyref,
);
}
}
}
(js, ts, self.js_doc_comments())
}
fn assert_class(&mut self, arg: &str, class: &str) {
if !self.cx.config.debug {
return;
}
self.cx.expose_assert_class();
self.prelude(&format!("_assertClass({}, {});", arg, class));
}
fn assert_not_moved(&mut self, arg: &str) {
if !self.cx.config.debug {
return;
}
self.prelude(&format!(
"\
if ({0}.ptr === 0) {{
throw new Error('Attempt to use a moved value');
}}
",
arg,
));
}
}