715 lines
25 KiB
Rust
Raw Normal View History

Migrate `wasm-bindgen` to using `walrus` This commit moves `wasm-bindgen` the CLI tool from internally using `parity-wasm` for wasm parsing/serialization to instead use `walrus`. The `walrus` crate is something we've been working on recently with an aim to replace the usage of `parity-wasm` in `wasm-bindgen` to make the current CLI tool more maintainable as well as more future-proof. The `walrus` crate provides a much nicer AST to work with as well as a structured `Module`, whereas `parity-wasm` provides a very raw interface to the wasm module which isn't really appropriate for our use case. The many transformations and tweaks that wasm-bindgen does have a huge amount of ad-hoc index management to carefully craft a final wasm binary, but this is all entirely taken care for us with the `walrus` crate. Additionally, `wasm-bindgen` will ingest and rewrite the wasm file, often changing the binary offsets of functions. Eventually with DWARF debug information we'll need to be sure to preserve the debug information throughout the transformations that `wasm-bindgen` does today. This is practically impossible to do with the `parity-wasm` architecture, but `walrus` was designed from the get-go to solve this problem transparently in the `walrus` crate itself. (it doesn't today, but this is planned work) It is the intention that this does not end up regressing any `wasm-bindgen` use cases, neither in functionality or in speed. As a large change and refactoring, however, it's likely that at least something will arise! We'll want to continue to remain vigilant to any issues that come up with this commit. Note that the `gc` crate has been deleted as part of this change, as the `gc` crate is no longer necessary since `walrus` does it automatically. Additionally the `gc` crate was one of the main problems with preserving debug information as it often deletes wasm items! Finally, this also starts moving crates to the 2018 edition where necessary since `walrus` requires the 2018 edition, and in general it's more pleasant to work within the 2018 edition!
2019-01-31 09:54:23 -08:00
use crate::descriptor::{Descriptor, Function};
use crate::js::{Context, ImportTarget, Js2Rust};
use failure::{bail, Error};
/// Helper struct for manufacturing a shim in JS used to translate Rust types to
/// JS, then invoking an imported JS function.
pub struct Rust2Js<'a, 'b: 'a> {
pub cx: &'a mut Context<'b>,
/// Arguments of the JS shim that we're generating, aka the variables passed
/// from Rust which are only numbers.
shim_arguments: Vec<String>,
/// Arguments which are forwarded to the imported JS function
js_arguments: Vec<String>,
/// Conversions that happen before we invoke the wasm function, such as
/// converting a string to a ptr/length pair.
prelude: String,
/// "Destructors" or cleanup that must happen after the wasm function
/// finishes. This is scheduled in a `finally` block.
finally: String,
/// Next global index to write to when passing arguments via the single
/// global stack.
global_idx: usize,
/// Index of the next argument for unique name generation purposes.
arg_idx: usize,
/// Expression used to generate the return value. The string "JS" in this
/// expression is replaced with the actual JS invocation eventually.
ret_expr: String,
/// Whether or not we're catching JS exceptions
catch: bool,
catch_and_rethrow: bool,
2018-08-19 13:39:16 +01:00
/// Whether or not the last argument is a slice representing variadic arguments.
variadic: bool,
}
impl<'a, 'b> Rust2Js<'a, 'b> {
pub fn new(cx: &'a mut Context<'b>) -> Rust2Js<'a, 'b> {
Rust2Js {
cx,
shim_arguments: Vec::new(),
js_arguments: Vec::new(),
prelude: String::new(),
finally: String::new(),
global_idx: 0,
arg_idx: 0,
ret_expr: String::new(),
catch: false,
catch_and_rethrow: false,
2018-08-19 13:39:16 +01:00
variadic: false,
}
}
pub fn catch(&mut self, catch: bool) -> &mut Self {
self.catch = catch;
self
}
pub fn catch_and_rethrow(&mut self, catch_and_rethrow: bool) -> &mut Self {
self.catch_and_rethrow = catch_and_rethrow;
self
}
2018-08-19 13:39:16 +01:00
pub fn variadic(&mut self, variadic: bool) -> &mut Self {
self.variadic = variadic;
self
}
/// Generates all bindings necessary for the signature in `Function`,
/// creating necessary argument conversions and return value processing.
pub fn process(&mut self, function: &Function) -> Result<&mut Self, Error> {
for arg in function.arguments.iter() {
self.argument(arg)?;
}
self.ret(&function.ret)?;
Ok(self)
}
2018-08-19 13:39:16 +01:00
/// Get a generated name for an argument.
fn shim_argument(&mut self) -> String {
let s = format!("arg{}", self.arg_idx);
self.arg_idx += 1;
self.shim_arguments.push(s.clone());
s
}
fn argument(&mut self, arg: &Descriptor) -> Result<(), Error> {
let abi = self.shim_argument();
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
let (arg, optional) = match arg {
Descriptor::Option(t) => (&**t, true),
_ => (arg, false),
};
if let Some(ty) = arg.vector_kind() {
let abi2 = self.shim_argument();
let f = self.cx.expose_get_vector_from_wasm(ty);
2018-06-27 22:42:34 -07:00
self.prelude(&format!(
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
"let v{0} = {prefix}{func}({0}, {1});",
2018-06-27 22:42:34 -07:00
abi,
abi2,
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
func = f,
prefix = if optional {
format!("{} == 0 ? undefined : ", abi)
} else {
String::new()
},
2018-06-27 22:42:34 -07:00
));
if !arg.is_by_ref() && !arg.is_clamped_by_ref() {
2018-06-27 22:42:34 -07:00
self.prelude(&format!(
"\
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
{start}
v{0} = v{0}.slice();
wasm.__wbindgen_free({0}, {1} * {size});
{end}\
2018-06-27 22:42:34 -07:00
",
abi,
abi2,
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
size = ty.size(),
start = if optional {
format!("if ({} !== 0) {{", abi)
} else {
String::new()
},
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
end = if optional { "}" } else { "" },
2018-06-27 22:42:34 -07:00
));
self.cx.require_internal_export("__wbindgen_free")?;
}
self.js_arguments.push(format!("v{}", abi));
2018-06-27 22:42:34 -07:00
return Ok(());
}
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
// No need to special case `optional` here because `takeObject` will
// naturally work.
if arg.is_anyref() {
self.cx.expose_take_object();
self.js_arguments.push(format!("takeObject({})", abi));
return Ok(());
} else if arg.is_ref_anyref() {
self.cx.expose_get_object();
self.js_arguments.push(format!("getObject({})", abi));
return Ok(());
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
}
if optional {
if arg.is_wasm_native() {
2018-08-03 16:28:35 +03:00
let value = self.shim_argument();
self.js_arguments.push(format!(
"{present} === 0 ? undefined : {value}",
value = value,
present = abi,
));
return Ok(());
2018-08-03 16:28:35 +03:00
}
if arg.is_abi_as_u32() {
self.js_arguments
.push(format!("{0} === 0xFFFFFF ? undefined : {0}", abi));
return Ok(());
2018-08-03 16:28:35 +03:00
}
if let Some(signed) = arg.get_64() {
let f = if signed {
self.cx.expose_int64_cvt_shim()
} else {
self.cx.expose_uint64_cvt_shim()
};
self.shim_argument();
let low = self.shim_argument();
let high = self.shim_argument();
let name = format!("n{}", abi);
self.prelude(&format!(
"
u32CvtShim[0] = {present} === 0 ? 0 : {low};
u32CvtShim[1] = {present} === 0 ? 0 : {high};
const {name} = {present} === 0 ? undefined : {f}[0];
2018-08-03 16:28:35 +03:00
",
present = abi,
low = low,
high = high,
f = f,
name = name,
));
self.js_arguments.push(name);
return Ok(());
}
2018-08-03 19:07:12 +03:00
match *arg {
Descriptor::Boolean => {
self.js_arguments
.push(format!("{0} === 0xFFFFFF ? undefined : {0} !== 0", abi));
return Ok(());
}
Descriptor::Enum { hole } => {
self.js_arguments
.push(format!("{0} === {1} ? undefined : {0}", abi, hole));
return Ok(());
}
2018-08-03 20:45:57 +03:00
Descriptor::Char => {
let value = self.shim_argument();
self.js_arguments.push(format!(
"{present} === 0 ? undefined : String.fromCodePoint({value})",
value = value,
present = abi,
));
return Ok(());
}
_ => bail!(
"unsupported optional argument type for calling JS function from Rust: {:?}",
arg
),
2018-08-03 19:07:12 +03:00
};
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
}
2018-08-03 16:28:35 +03:00
if let Some(signed) = arg.get_64() {
let f = if signed {
self.cx.expose_int64_cvt_shim()
} else {
self.cx.expose_uint64_cvt_shim()
};
2018-08-03 16:28:35 +03:00
let high = self.shim_argument();
let name = format!("n{}", abi);
2018-06-27 22:42:34 -07:00
self.prelude(&format!(
"\
u32CvtShim[0] = {low};
u32CvtShim[1] = {high};
const {name} = {f}[0];
2018-06-27 22:42:34 -07:00
",
2018-08-03 16:28:35 +03:00
low = abi,
high = high,
f = f,
name = name,
));
self.js_arguments.push(name);
2018-06-27 22:42:34 -07:00
return Ok(());
}
if let Some(class) = arg.rust_struct() {
if arg.is_by_ref() {
bail!("cannot invoke JS functions with custom ref types yet")
}
self.cx.require_class_wrap(class);
let assign = format!("let c{0} = {1}.__wrap({0});", abi, class);
self.prelude(&assign);
self.js_arguments.push(format!("c{}", abi));
2018-06-27 22:42:34 -07:00
return Ok(());
}
if let Some((f, mutable)) = arg.stack_closure() {
let arg2 = self.shim_argument();
let (js, _ts, _js_doc) = {
let mut builder = Js2Rust::new("", self.cx);
if mutable {
2018-06-27 22:42:34 -07:00
builder
.prelude("let a = this.a;\n")
.prelude("this.a = 0;\n")
.rust_argument("a")
.finally("this.a = a;\n");
} else {
builder.rust_argument("this.a");
}
builder
.rust_argument("this.b")
.process(f)?
.finish("function", "this.f")
};
self.cx.function_table_needed = true;
self.global_idx();
2018-06-27 22:42:34 -07:00
self.prelude(&format!(
"\
let cb{0} = {js};\n\
cb{0}.f = wasm.__wbg_function_table.get({idx});\n\
cb{0}.a = {0};\n\
cb{0}.b = {1};\n\
2018-06-27 22:42:34 -07:00
",
abi,
arg2,
2018-06-27 22:42:34 -07:00
js = js,
idx = f.shim_idx,
2018-06-27 22:42:34 -07:00
));
self.finally(&format!("cb{0}.a = cb{0}.b = 0;", abi));
self.js_arguments.push(format!("cb{0}.bind(cb{0})", abi));
2018-06-27 22:42:34 -07:00
return Ok(());
}
let invoc_arg = match *arg {
ref d if d.is_number() => abi,
Descriptor::Boolean => format!("{} !== 0", abi),
2018-06-27 22:42:34 -07:00
Descriptor::Char => format!("String.fromCodePoint({})", abi),
_ => bail!(
"unsupported argument type for calling JS function from Rust: {:?}",
arg
),
};
self.js_arguments.push(invoc_arg);
Ok(())
}
fn ret(&mut self, ty: &Descriptor) -> Result<(), Error> {
if let Descriptor::Unit = ty {
self.ret_expr = "JS;".to_string();
return Ok(());
}
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
let (ty, optional) = match ty {
Descriptor::Option(t) => (&**t, true),
_ => (ty, false),
};
if ty.is_by_ref() {
bail!("cannot return a reference from JS to Rust")
}
if let Some(ty) = ty.vector_kind() {
let f = self.cx.pass_to_wasm_function(ty)?;
self.cx.expose_uint32_memory();
self.shim_arguments.insert(0, "ret".to_string());
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
let mut prelude = String::new();
let expr = if optional {
prelude.push_str("const val = JS;");
self.cx.expose_is_like_none();
format!("isLikeNone(val) ? [0, 0] : {}(val)", f)
} else {
format!("{}(JS)", f)
};
2018-06-27 22:42:34 -07:00
self.ret_expr = format!(
"\
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
{}
const retptr = {};
const retlen = WASM_VECTOR_LEN;
const mem = getUint32Memory();
mem[ret / 4] = retptr;
mem[ret / 4 + 1] = retlen;
",
prelude, expr
2018-06-27 22:42:34 -07:00
);
return Ok(());
}
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
if ty.is_anyref() {
self.cx.expose_add_heap_object();
if optional {
self.cx.expose_is_like_none();
self.ret_expr = "
const val = JS;
return isLikeNone(val) ? 0 : addHeapObject(val);
2018-11-27 12:07:59 -08:00
"
.to_string();
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
} else {
self.ret_expr = "return addHeapObject(JS);".to_string()
}
return Ok(());
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
}
if optional {
if ty.is_wasm_native() {
2018-08-03 16:28:35 +03:00
self.cx.expose_is_like_none();
self.cx.expose_uint32_memory();
match ty {
Descriptor::I32 => self.cx.expose_int32_memory(),
Descriptor::U32 => (),
Descriptor::F32 => self.cx.expose_f32_memory(),
Descriptor::F64 => self.cx.expose_f64_memory(),
_ => (),
};
self.shim_arguments.insert(0, "ret".to_string());
self.ret_expr = format!(
"
const val = JS;
getUint32Memory()[ret / 4] = !isLikeNone(val);
{mem}[ret / {size} + 1] = isLikeNone(val) ? 0 : val;
2018-08-03 16:28:35 +03:00
",
size = match ty {
Descriptor::I32 => 4,
Descriptor::U32 => 4,
Descriptor::F32 => 4,
Descriptor::F64 => 8,
_ => unreachable!(),
},
mem = match ty {
Descriptor::I32 => "getInt32Memory()",
Descriptor::U32 => "getUint32Memory()",
Descriptor::F32 => "getFloat32Memory()",
Descriptor::F64 => "getFloat64Memory()",
_ => unreachable!(),
}
);
return Ok(());
}
if ty.is_abi_as_u32() {
2018-08-03 16:28:35 +03:00
self.cx.expose_is_like_none();
self.ret_expr = "
const val = JS;
return isLikeNone(val) ? 0xFFFFFF : val;
2018-11-27 12:07:59 -08:00
"
.to_string();
2018-08-03 16:28:35 +03:00
return Ok(());
}
if let Some(signed) = ty.get_64() {
self.cx.expose_is_like_none();
self.cx.expose_uint32_memory();
let f = if signed {
self.cx.expose_int64_memory();
"getInt64Memory"
} else {
self.cx.expose_uint64_memory();
"getUint64Memory"
};
self.shim_arguments.insert(0, "ret".to_string());
self.ret_expr = format!(
"
const val = JS;
getUint32Memory()[ret / 4] = !isLikeNone(val);
{}()[ret / 8 + 1] = isLikeNone(val) ? BigInt(0) : val;
2018-08-03 16:28:35 +03:00
",
f
);
return Ok(());
}
2018-08-03 19:07:12 +03:00
match *ty {
Descriptor::Boolean => {
self.cx.expose_is_like_none();
self.ret_expr = "
const val = JS;
return isLikeNone(val) ? 0xFFFFFF : val ? 1 : 0;
2018-11-27 12:07:59 -08:00
"
.to_string();
2018-08-03 19:07:12 +03:00
return Ok(());
}
2018-08-03 20:45:57 +03:00
Descriptor::Char => {
self.cx.expose_is_like_none();
self.cx.expose_uint32_memory();
self.shim_arguments.insert(0, "ret".to_string());
self.ret_expr = "
const val = JS;
getUint32Memory()[ret / 4] = !isLikeNone(val);
getUint32Memory()[ret / 4 + 1] = isLikeNone(val) ? 0 : val.codePointAt(0);
2018-11-27 12:07:59 -08:00
"
.to_string();
2018-08-03 20:45:57 +03:00
return Ok(());
}
Descriptor::Enum { hole } => {
self.cx.expose_is_like_none();
Migrate `wasm-bindgen` to using `walrus` This commit moves `wasm-bindgen` the CLI tool from internally using `parity-wasm` for wasm parsing/serialization to instead use `walrus`. The `walrus` crate is something we've been working on recently with an aim to replace the usage of `parity-wasm` in `wasm-bindgen` to make the current CLI tool more maintainable as well as more future-proof. The `walrus` crate provides a much nicer AST to work with as well as a structured `Module`, whereas `parity-wasm` provides a very raw interface to the wasm module which isn't really appropriate for our use case. The many transformations and tweaks that wasm-bindgen does have a huge amount of ad-hoc index management to carefully craft a final wasm binary, but this is all entirely taken care for us with the `walrus` crate. Additionally, `wasm-bindgen` will ingest and rewrite the wasm file, often changing the binary offsets of functions. Eventually with DWARF debug information we'll need to be sure to preserve the debug information throughout the transformations that `wasm-bindgen` does today. This is practically impossible to do with the `parity-wasm` architecture, but `walrus` was designed from the get-go to solve this problem transparently in the `walrus` crate itself. (it doesn't today, but this is planned work) It is the intention that this does not end up regressing any `wasm-bindgen` use cases, neither in functionality or in speed. As a large change and refactoring, however, it's likely that at least something will arise! We'll want to continue to remain vigilant to any issues that come up with this commit. Note that the `gc` crate has been deleted as part of this change, as the `gc` crate is no longer necessary since `walrus` does it automatically. Additionally the `gc` crate was one of the main problems with preserving debug information as it often deletes wasm items! Finally, this also starts moving crates to the 2018 edition where necessary since `walrus` requires the 2018 edition, and in general it's more pleasant to work within the 2018 edition!
2019-01-31 09:54:23 -08:00
self.ret_expr = format!(
"
const val = JS;
return isLikeNone(val) ? {} : val;
Migrate `wasm-bindgen` to using `walrus` This commit moves `wasm-bindgen` the CLI tool from internally using `parity-wasm` for wasm parsing/serialization to instead use `walrus`. The `walrus` crate is something we've been working on recently with an aim to replace the usage of `parity-wasm` in `wasm-bindgen` to make the current CLI tool more maintainable as well as more future-proof. The `walrus` crate provides a much nicer AST to work with as well as a structured `Module`, whereas `parity-wasm` provides a very raw interface to the wasm module which isn't really appropriate for our use case. The many transformations and tweaks that wasm-bindgen does have a huge amount of ad-hoc index management to carefully craft a final wasm binary, but this is all entirely taken care for us with the `walrus` crate. Additionally, `wasm-bindgen` will ingest and rewrite the wasm file, often changing the binary offsets of functions. Eventually with DWARF debug information we'll need to be sure to preserve the debug information throughout the transformations that `wasm-bindgen` does today. This is practically impossible to do with the `parity-wasm` architecture, but `walrus` was designed from the get-go to solve this problem transparently in the `walrus` crate itself. (it doesn't today, but this is planned work) It is the intention that this does not end up regressing any `wasm-bindgen` use cases, neither in functionality or in speed. As a large change and refactoring, however, it's likely that at least something will arise! We'll want to continue to remain vigilant to any issues that come up with this commit. Note that the `gc` crate has been deleted as part of this change, as the `gc` crate is no longer necessary since `walrus` does it automatically. Additionally the `gc` crate was one of the main problems with preserving debug information as it often deletes wasm items! Finally, this also starts moving crates to the 2018 edition where necessary since `walrus` requires the 2018 edition, and in general it's more pleasant to work within the 2018 edition!
2019-01-31 09:54:23 -08:00
",
hole
);
return Ok(());
}
_ => bail!(
"unsupported optional return type for calling JS function from Rust: {:?}",
ty
),
2018-08-03 19:07:12 +03:00
};
Add support for optional slice types (#507) * Shard the `convert.rs` module into sub-modules Hopefully this'll make the organization a little nicer over time! * Start adding support for optional types This commit starts adding support for optional types to wasm-bindgen as arguments/return values to functions. The strategy here is to add two new traits, `OptionIntoWasmAbi` and `OptionFromWasmAbi`. These two traits are used as a blanket impl to implement `IntoWasmAbi` and `FromWasmAbi` for `Option<T>`. Some consequences of this design: * It should be possible to ensure `Option<SomeForeignType>` implements to/from wasm traits. This is because the option-based traits can be implemented for foreign types. * A specialized implementation is possible for all types, so there's no need for `Option<T>` to introduce unnecessary overhead. * Two new traits is a bit unforutnate but I can't currently think of an alternative design that works for the above two constraints, although it doesn't mean one doesn't exist! * The error messages for "can't use this type here" is actually halfway decent because it says these new traits need to be implemented, which provides a good place to document and talk about what's going on here! * Nested references like `Option<&T>` can't implement `FromWasmAbi`. This means that you can't define a function in Rust which takes `Option<&str>`. It may be possible to do this one day but it'll likely require more trait trickery than I'm capable of right now. * Add support for optional slices This commit adds support for optional slice types, things like strings and arrays. The null representation of these has a pointer value of 0, which should never happen in normal Rust. Otherwise the various plumbing is done throughout the tooling to enable these types in all locations. * Fix `takeObject` on global sentinels These don't have a reference count as they're always expected to work, so avoid actually dropping a reference on them. * Remove some no longer needed bindings * Add support for optional anyref types This commit adds support for optional imported class types. Each type imported with `#[wasm_bindgen]` automatically implements the relevant traits and now supports `Option<Foo>` in various argument/return positions. * Fix building without the `std` feature * Actually fix the build... * Add support for optional types to WebIDL Closes #502
2018-07-19 14:44:23 -05:00
}
if ty.is_number() {
self.ret_expr = "return JS;".to_string();
2018-06-27 22:42:34 -07:00
return Ok(());
}
2018-08-03 16:28:35 +03:00
if let Some(signed) = ty.get_64() {
let f = if signed {
self.cx.expose_int64_memory();
"getInt64Memory"
} else {
self.cx.expose_uint64_memory();
"getUint64Memory"
};
self.shim_arguments.insert(0, "ret".to_string());
2018-06-27 22:42:34 -07:00
self.ret_expr = format!(
"\
const val = JS;\n\
{}()[ret / 8] = val;\n\
",
f
);
return Ok(());
}
if let Some(class) = ty.rust_struct() {
if ty.is_by_ref() {
bail!("cannot invoke JS functions returning custom ref types yet")
}
// Insert an assertion to the type of the returned value as
// otherwise this will cause memory unsafety on the Rust side of
// things.
self.ret_expr = format!(
"\
const val = JS;
if (!(val instanceof {0})) {{
throw new Error('expected value of type {0}');
}}
const ret = val.ptr;
val.ptr = 0;
return ret;\
",
class
);
return Ok(());
}
self.ret_expr = match *ty {
Descriptor::Boolean => "return JS;".to_string(),
2018-06-15 12:55:37 -05:00
Descriptor::Char => "return JS.codePointAt(0);".to_string(),
_ => bail!(
"unsupported return type for calling JS function from Rust: {:?}",
ty
),
};
Ok(())
}
/// Returns whether this shim won't actually do anything when called other
/// than forward the invocation somewhere else.
///
/// This is used as an optimization to wire up imports directly where
/// possible and avoid a shim in some circumstances.
pub fn is_noop(&self) -> bool {
let Rust2Js {
// fields which may affect whether we do nontrivial work
catch,
catch_and_rethrow,
finally,
js_arguments,
prelude,
ret_expr,
variadic,
shim_arguments,
// all other fields, listed explicitly here so if one is added we'll
// trigger a nonexhaustive error.
arg_idx: _,
cx: _,
global_idx: _,
} = self;
!catch &&
!catch_and_rethrow &&
!variadic &&
prelude.is_empty() &&
finally.is_empty() &&
// make sure our faux return expression is "simple" by not
// performing any sort of transformation on the return value
(ret_expr == "JS;" || ret_expr == "return JS;") &&
// similarly we want to make sure that all the arguments are simply
// forwarded from the shim we would generate to the import,
// requiring no transformations
js_arguments == shim_arguments
}
pub fn finish(&mut self, invoc: &ImportTarget) -> Result<String, Error> {
let mut ret = String::new();
ret.push_str("function(");
ret.push_str(&self.shim_arguments.join(", "));
if self.catch {
if self.shim_arguments.len() > 0 {
ret.push_str(", ")
}
ret.push_str("exnptr");
}
ret.push_str(") {\n");
2018-06-15 12:55:37 -05:00
ret.push_str(&self.prelude);
let variadic = self.variadic;
let ret_expr = &self.ret_expr;
let js_arguments = &self.js_arguments;
let handle_variadic = |invoc: &str, js_arguments: &[String]| {
let ret = if variadic {
let (last_arg, args) = match js_arguments.split_last() {
Some(pair) => pair,
None => bail!("a function with no arguments cannot be variadic"),
};
if args.len() > 0 {
ret_expr.replace(
"JS",
&format!("{}({}, ...{})", invoc, args.join(", "), last_arg),
)
} else {
2018-11-30 13:04:05 -08:00
ret_expr.replace("JS", &format!("{}(...{})", invoc, last_arg))
}
} else {
2018-11-30 13:04:05 -08:00
ret_expr.replace("JS", &format!("{}({})", invoc, js_arguments.join(", ")))
};
Ok(ret)
};
let fixed = |desc: &str, class: &Option<String>, amt: usize| {
if variadic {
bail!("{} cannot be variadic", desc);
}
match (class, js_arguments.len()) {
2018-11-30 13:04:05 -08:00
(None, n) if n == amt + 1 => Ok((js_arguments[0].clone(), &js_arguments[1..])),
(None, _) => bail!("setters must have {} arguments", amt + 1),
(Some(class), n) if n == amt => Ok((class.clone(), &js_arguments[..])),
(Some(_), _) => bail!("static setters must have {} arguments", amt),
}
2018-08-19 13:39:16 +01:00
};
let mut invoc = match invoc {
2018-11-27 12:07:59 -08:00
ImportTarget::Function(f) => handle_variadic(&f, &self.js_arguments)?,
ImportTarget::Constructor(c) => {
handle_variadic(&format!("new {}", c), &self.js_arguments)?
}
2018-11-27 12:07:59 -08:00
ImportTarget::Method(f) => handle_variadic(&format!("{}.call", f), &self.js_arguments)?,
ImportTarget::StructuralMethod(f) => {
let (receiver, args) = match self.js_arguments.split_first() {
Some(pair) => pair,
None => bail!("methods must have at least one argument"),
};
handle_variadic(&format!("{}.{}", receiver, f), args)?
}
ImportTarget::StructuralGetter(class, field) => {
let (receiver, _) = fixed("getter", class, 0)?;
let expr = format!("{}.{}", receiver, field);
self.ret_expr.replace("JS", &expr)
}
ImportTarget::StructuralSetter(class, field) => {
let (receiver, val) = fixed("setter", class, 1)?;
let expr = format!("{}.{} = {}", receiver, field, val[0]);
self.ret_expr.replace("JS", &expr)
}
ImportTarget::StructuralIndexingGetter(class) => {
let (receiver, field) = fixed("indexing getter", class, 1)?;
let expr = format!("{}[{}]", receiver, field[0]);
self.ret_expr.replace("JS", &expr)
}
ImportTarget::StructuralIndexingSetter(class) => {
let (receiver, field) = fixed("indexing setter", class, 2)?;
let expr = format!("{}[{}] = {}", receiver, field[0], field[1]);
self.ret_expr.replace("JS", &expr)
}
ImportTarget::StructuralIndexingDeleter(class) => {
let (receiver, field) = fixed("indexing deleter", class, 1)?;
let expr = format!("delete {}[{}]", receiver, field[0]);
self.ret_expr.replace("JS", &expr)
}
};
if self.catch {
2019-02-04 02:08:08 +01:00
self.cx.expose_handle_error();
2018-06-27 22:42:34 -07:00
invoc = format!(
"\
try {{\n\
{}
}} catch (e) {{\n\
2019-02-04 02:08:08 +01:00
handleError(exnptr, e);\n\
}}\
",
2019-02-04 02:08:08 +01:00
&invoc
2018-06-27 22:42:34 -07:00
);
} else if self.catch_and_rethrow {
invoc = format!(
"\
try {{\n\
{}
}} catch (e) {{\n\
console.error(\"wasm-bindgen: imported JS function that \
was not marked as `catch` threw an error:\", \
e);
throw e;
}}\
",
&invoc,
);
}
if self.finally.len() > 0 {
2018-06-27 22:42:34 -07:00
invoc = format!(
"\
try {{\n\
{}
}} finally {{\n\
{}
}}\
",
2018-06-27 22:42:34 -07:00
&invoc, &self.finally
);
}
2018-06-15 12:55:37 -05:00
ret.push_str(&invoc);
2018-06-15 12:55:37 -05:00
ret.push_str("\n}\n");
Ok(ret)
}
fn global_idx(&mut self) -> usize {
let ret = self.global_idx;
self.global_idx += 1;
ret
}
fn prelude(&mut self, s: &str) -> &mut Self {
for line in s.lines() {
self.prelude.push_str(line);
self.prelude.push_str("\n");
}
self
}
fn finally(&mut self, s: &str) -> &mut Self {
for line in s.lines() {
self.finally.push_str(line);
self.finally.push_str("\n");
}
self
}
}