215 lines
7.0 KiB
Rust
Raw Normal View History

Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
extern crate base64;
use std::collections::HashSet;
use parity_wasm::elements::*;
use super::Error;
pub struct Config {
base64: bool,
}
pub struct Output {
module: Module,
base64: bool,
}
impl Config {
pub fn new() -> Config {
Config {
base64: false,
}
}
pub fn base64(&mut self, base64: bool) -> &mut Self {
self.base64 = base64;
self
}
pub fn generate(&mut self, wasm: &[u8]) -> Result<Output, Error> {
assert!(self.base64);
let module = deserialize_buffer(wasm).map_err(|e| {
2018-03-05 19:25:50 -08:00
::Error(format!("{:?}", e))
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
})?;
Ok(Output {
module,
base64: self.base64,
})
}
}
impl Output {
pub fn typescript(&self) -> String {
let mut exports = format!("/* tslint:disable */\n");
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
if let Some(i) = self.module.export_section() {
let imported_functions = self.module.import_section()
.map(|m| m.functions() as u32)
.unwrap_or(0);
for entry in i.entries() {
let idx = match *entry.internal() {
Internal::Function(i) => i - imported_functions,
Internal::Memory(_) => {
exports.push_str(&format!("
export const {}: WebAssembly.Memory;
", entry.field()));
continue
}
Internal::Table(_) => {
continue
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
Internal::Global(_) => {
continue
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
};
let functions = self.module.function_section()
.expect("failed to find function section");
let idx = functions.entries()[idx as usize].type_ref();
let types = self.module.type_section()
.expect("failed to find type section");
let ty = match types.types()[idx as usize] {
Type::Function(ref f) => f,
};
let mut args = String::new();
for (i, _) in ty.params().iter().enumerate() {
if i > 0 {
args.push_str(", ");
}
args.push((b'a' + (i as u8)) as char);
args.push_str(": number");
}
exports.push_str(&format!("
export function {name}({args}): {ret};
",
name = entry.field(),
args = args,
ret = if ty.return_type().is_some() { "number" } else { "void" },
));
}
}
if self.base64 {
exports.push_str("export const booted: Promise<boolean>;");
}
return exports
}
pub fn js(self) -> String {
let mut js_imports = String::new();
let mut exports = String::new();
let mut imports = String::new();
let mut export_mem = false;
if let Some(i) = self.module.import_section() {
let mut set = HashSet::new();
for entry in i.entries() {
match *entry.external() {
External::Function(_) => {}
External::Table(_) => {
panic!("wasm imports a table which isn't supported yet");
}
External::Memory(_) => {
panic!("wasm imports memory which isn't supported yet");
}
External::Global(_) => {
panic!("wasm imports globals which aren't supported yet");
}
}
if !set.insert(entry.module()) {
continue
}
let name = (b'a' + (set.len() as u8)) as char;
js_imports.push_str(&format!("import * as import_{} from '{}';",
name,
entry.module()));
imports.push_str(&format!("'{}': import_{}, ", entry.module(), name));
}
}
if let Some(i) = self.module.export_section() {
let imported_functions = self.module.import_section()
.map(|m| m.functions() as u32)
.unwrap_or(0);
for entry in i.entries() {
let idx = match *entry.internal() {
Internal::Function(i) => i - imported_functions,
Internal::Memory(_) => {
export_mem = true;
continue
}
Internal::Table(_) => {
continue
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
Internal::Global(_) => {
continue
Rewrite wasm-bindgen with ES6 modules in mind This commit is a mostly-rewrite of the `wasm-bindgen` tool. After some recent discussions it's clear that the previous model wasn't quite going to cut it, and this iteration is one which primarily embraces ES6 modules and the idea that this is a polyfill for host bindings. The overall interface and functionality hasn't changed much but the underlying technology has now changed significantly. Previously `wasm-bindgen` would emit a JS file that acted as an ES6 module but had a bit of a wonky interface. It exposed an async function for instantiation of the wasm module, but that's the bundler's job, not ours! Instead this iteration views each input and output as a discrete ES6 module. The input wasm file is interpreted as "this *should* be an ES6 module with rich types" and the output is "well here's some ES6 modules that fulfill that contract". Notably the tool now replaces the original wasm ES6 module with a JS ES6 module that has the "rich interface". Additionally a second ES6 module is emitted (the actual wasm file) which imports and exports to the original ES6 module. This strategy is hoped to be much more amenable to bundlers and controlling how the wasm itself is instantiated. The emitted files files purely assume ES6 modules and should be able to work as-is once ES6 module integration for wasm is completed. Note that there aren't a ton of tools to pretend a wasm module is an ES6 module at the moment but those should be coming soon! In the meantime a local `wasm2es6js` hack was added to help make *something* work today. The README has also been updated with instructions for interacting with this model.
2018-01-29 21:20:38 -08:00
}
};
let functions = self.module.function_section()
.expect("failed to find function section");
let idx = functions.entries()[idx as usize].type_ref();
let types = self.module.type_section()
.expect("failed to find type section");
let ty = match types.types()[idx as usize] {
Type::Function(ref f) => f,
};
let mut args = String::new();
for (i, _) in ty.params().iter().enumerate() {
if i > 0 {
args.push_str(", ");
}
args.push((b'a' + (i as u8)) as char);
}
exports.push_str(&format!("
export function {name}({args}) {{
{ret} wasm.exports.{name}({args});
}}
",
name = entry.field(),
args = args,
ret = if ty.return_type().is_some() { "return" } else { "" },
));
}
}
let wasm = serialize(self.module)
.expect("failed to serialize");
format!("
{js_imports}
let wasm;
let bytes;
const base64 = \"{base64}\";
if (typeof Buffer === 'undefined') {{
bytes = Uint8Array.from(atob(base64), c => c.charCodeAt(0));
}} else {{
bytes = Buffer.from(base64, 'base64');
}}
{mem_export}
export const booted = WebAssembly.instantiate(bytes, {{ {imports} }})
.then(obj => {{
wasm = obj.instance;
{memory}
}});
{exports}
",
base64 = base64::encode(&wasm),
js_imports = js_imports,
imports = imports,
exports = exports,
mem_export = if export_mem { "export let memory;" } else { "" },
memory = if export_mem { "memory = wasm.exports.memory;" } else { "" },
)
}
}