mirror of
https://github.com/fluencelabs/redis
synced 2025-03-23 11:00:50 +00:00
Current todo: - replace functions in zset.{c,h} with a new unified Redis zset access API. Once we get the zset interface fixed, we can squash relevant commits in this branch and have one nice commit to merge into unstable. This commit adds: - Geo commands - Tests; runnable with: ./runtest --single unit/geo - Geo helpers in deps/geohash-int/ - src/geo.{c,h} and src/geojson.{c,h} implementing geo commands - Updated build configurations to get everything working - TEMPORARY: src/zset.{c,h} implementing zset score and zset range reading without writing to client output buffers. - Modified linkage of one t_zset.c function for use in zset.c Conflicts: src/Makefile src/redis.c
280 lines
9.8 KiB
C
280 lines
9.8 KiB
C
/*
|
|
* Copyright (c) 2013-2014, yinqiwen <yinqiwen@gmail.com>
|
|
* Copyright (c) 2014, Matt Stancliff <matt@genges.com>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* This is a C++ to C conversion from the ardb project.
|
|
* This file started out as:
|
|
* https://github.com/yinqiwen/ardb/blob/d42503/src/geo/geohash_helper.cpp
|
|
*/
|
|
|
|
#include "geohash_helper.h"
|
|
|
|
#define D_R (M_PI / 180.0)
|
|
#define R_MAJOR 6378137.0
|
|
#define R_MINOR 6356752.3142
|
|
#define RATIO (R_MINOR / R_MAJOR)
|
|
#define ECCENT (sqrt(1.0 - (RATIO *RATIO)))
|
|
#define COM (0.5 * ECCENT)
|
|
|
|
/// @brief The usual PI/180 constant
|
|
const double DEG_TO_RAD = 0.017453292519943295769236907684886;
|
|
/// @brief Earth's quatratic mean radius for WGS-84
|
|
const double EARTH_RADIUS_IN_METERS = 6372797.560856;
|
|
|
|
const double MERCATOR_MAX = 20037726.37;
|
|
const double MERCATOR_MIN = -20037726.37;
|
|
|
|
static inline double deg_rad(double ang) { return ang * D_R; }
|
|
static inline double rad_deg(double ang) { return ang / D_R; }
|
|
|
|
double mercator_y(double lat) {
|
|
lat = fmin(89.5, fmax(lat, -89.5));
|
|
double phi = deg_rad(lat);
|
|
double sinphi = sin(phi);
|
|
double con = ECCENT * sinphi;
|
|
con = pow((1.0 - con) / (1.0 + con), COM);
|
|
double ts = tan(0.5 * (M_PI * 0.5 - phi)) / con;
|
|
return 0 - R_MAJOR * log(ts);
|
|
}
|
|
|
|
double mercator_x(double lon) { return R_MAJOR * deg_rad(lon); }
|
|
double merc_lon(double x) { return rad_deg(x) / R_MAJOR; }
|
|
|
|
double merc_lat(double y) {
|
|
double ts = exp(-y / R_MAJOR);
|
|
double phi = M_PI_2 - 2 * atan(ts);
|
|
double dphi = 1.0;
|
|
int i;
|
|
for (i = 0; fabs(dphi) > 0.000000001 && i < 15; i++) {
|
|
double con = ECCENT * sin(phi);
|
|
dphi =
|
|
M_PI_2 - 2 * atan(ts * pow((1.0 - con) / (1.0 + con), COM)) - phi;
|
|
phi += dphi;
|
|
}
|
|
return rad_deg(phi);
|
|
}
|
|
|
|
/* You must *ONLY* estimate steps when you are encoding.
|
|
* If you are decoding, always decode to GEO_STEP_MAX (26). */
|
|
uint8_t geohashEstimateStepsByRadius(double range_meters) {
|
|
uint8_t step = 1;
|
|
while (range_meters > 0 && range_meters < MERCATOR_MAX) {
|
|
range_meters *= 2;
|
|
step++;
|
|
}
|
|
step--;
|
|
if (!step)
|
|
step = 26; /* if range = 0, give max resolution */
|
|
return step > 26 ? 26 : step;
|
|
}
|
|
|
|
double geohashGetXWGS84(double x) { return merc_lon(x); }
|
|
double geohashGetYWGS84(double y) { return merc_lat(y); }
|
|
|
|
double geohashGetXMercator(double longtitude) {
|
|
if (longtitude > 180 || longtitude < -180) {
|
|
return longtitude;
|
|
}
|
|
return mercator_x(longtitude);
|
|
}
|
|
double geohashGetYMercator(double latitude) {
|
|
if (latitude > 90 || latitude < -90) {
|
|
return latitude;
|
|
}
|
|
return mercator_y(latitude);
|
|
}
|
|
|
|
int geohashBitsComparator(const GeoHashBits *a, const GeoHashBits *b) {
|
|
/* If step not equal, compare on step. Else, compare on bits. */
|
|
return a->step != b->step ? a->step - b->step : a->bits - b->bits;
|
|
}
|
|
|
|
bool geohashBoundingBox(double latitude, double longitude, double radius_meters,
|
|
double *bounds) {
|
|
if (!bounds)
|
|
return false;
|
|
|
|
double latr, lonr;
|
|
latr = deg_rad(latitude);
|
|
lonr = deg_rad(longitude);
|
|
|
|
double distance = radius_meters / EARTH_RADIUS_IN_METERS;
|
|
double min_latitude = latr - distance;
|
|
double max_latitude = latr + distance;
|
|
|
|
/* Note: we're being lazy and not accounting for coordinates near poles */
|
|
double min_longitude, max_longitude;
|
|
double difference_longitude = asin(sin(distance) / cos(latr));
|
|
min_longitude = lonr - difference_longitude;
|
|
max_longitude = lonr + difference_longitude;
|
|
|
|
bounds[0] = rad_deg(min_latitude);
|
|
bounds[1] = rad_deg(min_longitude);
|
|
bounds[2] = rad_deg(max_latitude);
|
|
bounds[3] = rad_deg(max_longitude);
|
|
|
|
return true;
|
|
}
|
|
|
|
GeoHashRadius geohashGetAreasByRadius(uint8_t coord_type, double latitude,
|
|
double longitude, double radius_meters) {
|
|
GeoHashRange lat_range, long_range;
|
|
GeoHashRadius radius = { { 0 } };
|
|
GeoHashBits hash = { 0 };
|
|
GeoHashNeighbors neighbors = { { 0 } };
|
|
GeoHashArea area = { { 0 } };
|
|
double delta_longitude, delta_latitude;
|
|
double min_lat, max_lat, min_lon, max_lon;
|
|
int steps;
|
|
|
|
if (coord_type == GEO_WGS84_TYPE) {
|
|
double bounds[4];
|
|
geohashBoundingBox(latitude, longitude, radius_meters, bounds);
|
|
min_lat = bounds[0];
|
|
min_lon = bounds[1];
|
|
max_lat = bounds[2];
|
|
max_lon = bounds[3];
|
|
} else {
|
|
delta_latitude = delta_longitude = radius_meters;
|
|
min_lat = latitude - delta_latitude;
|
|
max_lat = latitude + delta_latitude;
|
|
min_lon = longitude - delta_longitude;
|
|
max_lon = longitude + delta_longitude;
|
|
}
|
|
|
|
steps = geohashEstimateStepsByRadius(radius_meters);
|
|
|
|
geohashGetCoordRange(coord_type, &lat_range, &long_range);
|
|
geohashEncode(&lat_range, &long_range, latitude, longitude, steps, &hash);
|
|
geohashNeighbors(&hash, &neighbors);
|
|
geohashDecode(lat_range, long_range, hash, &area);
|
|
|
|
if (area.latitude.min < min_lat) {
|
|
GZERO(neighbors.south);
|
|
GZERO(neighbors.south_west);
|
|
GZERO(neighbors.south_east);
|
|
}
|
|
if (area.latitude.max > max_lat) {
|
|
GZERO(neighbors.north);
|
|
GZERO(neighbors.north_east);
|
|
GZERO(neighbors.north_west);
|
|
}
|
|
if (area.longitude.min < min_lon) {
|
|
GZERO(neighbors.west);
|
|
GZERO(neighbors.south_west);
|
|
GZERO(neighbors.north_west);
|
|
}
|
|
if (area.longitude.max > max_lon) {
|
|
GZERO(neighbors.east);
|
|
GZERO(neighbors.south_east);
|
|
GZERO(neighbors.north_east);
|
|
}
|
|
radius.hash = hash;
|
|
radius.neighbors = neighbors;
|
|
radius.area = area;
|
|
return radius;
|
|
}
|
|
|
|
GeoHashRadius geohashGetAreasByRadiusWGS84(double latitude, double longitude,
|
|
double radius_meters) {
|
|
return geohashGetAreasByRadius(GEO_WGS84_TYPE, latitude, longitude,
|
|
radius_meters);
|
|
}
|
|
|
|
GeoHashRadius geohashGetAreasByRadiusMercator(double latitude, double longitude,
|
|
double radius_meters) {
|
|
return geohashGetAreasByRadius(GEO_MERCATOR_TYPE, latitude, longitude,
|
|
radius_meters);
|
|
}
|
|
|
|
GeoHashFix52Bits geohashAlign52Bits(const GeoHashBits hash) {
|
|
uint64_t bits = hash.bits;
|
|
bits <<= (52 - hash.step * 2);
|
|
return bits;
|
|
}
|
|
|
|
/* calculate distance using haversin great circle distance formula */
|
|
double distanceEarth(double lat1d, double lon1d, double lat2d, double lon2d) {
|
|
double lat1r, lon1r, lat2r, lon2r, u, v;
|
|
lat1r = deg_rad(lat1d);
|
|
lon1r = deg_rad(lon1d);
|
|
lat2r = deg_rad(lat2d);
|
|
lon2r = deg_rad(lon2d);
|
|
u = sin((lat2r - lat1r) / 2);
|
|
v = sin((lon2r - lon1r) / 2);
|
|
return 2.0 * EARTH_RADIUS_IN_METERS *
|
|
asin(sqrt(u * u + cos(lat1r) * cos(lat2r) * v * v));
|
|
}
|
|
|
|
bool geohashGetDistanceIfInRadius(uint8_t coord_type, double x1, double y1,
|
|
double x2, double y2, double radius,
|
|
double *distance) {
|
|
if (coord_type == GEO_WGS84_TYPE) {
|
|
*distance = distanceEarth(y1, x1, y2, x2);
|
|
if (*distance > radius) {
|
|
return false;
|
|
}
|
|
} else {
|
|
double xx = (x1 - x2) * (x1 - x2);
|
|
double yy = (y1 - y2) * (y1 - y2);
|
|
double dd = xx + yy;
|
|
*distance = dd;
|
|
if (dd > (radius * radius)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool geohashGetDistanceIfInRadiusWGS84(double x1, double y1, double x2,
|
|
double y2, double radius,
|
|
double *distance) {
|
|
return geohashGetDistanceIfInRadius(GEO_WGS84_TYPE, x1, y1, x2, y2, radius,
|
|
distance);
|
|
}
|
|
|
|
bool geohashGetDistanceSquaredIfInRadiusMercator(double x1, double y1,
|
|
double x2, double y2,
|
|
double radius,
|
|
double *distance) {
|
|
return geohashGetDistanceIfInRadius(GEO_MERCATOR_TYPE, x1, y1, x2, y2,
|
|
radius, distance);
|
|
}
|
|
|
|
bool geohashVerifyCoordinates(uint8_t coord_type, double x, double y) {
|
|
GeoHashRange lat_range, long_range;
|
|
geohashGetCoordRange(coord_type, &lat_range, &long_range);
|
|
|
|
if (x < long_range.min || x > long_range.max || y < lat_range.min ||
|
|
y > lat_range.max) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|