mirror of
https://github.com/fluencelabs/redis
synced 2025-03-26 04:11:04 +00:00
1028 lines
36 KiB
C
1028 lines
36 KiB
C
#include "redis.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include <math.h>
|
|
#include <signal.h>
|
|
|
|
/* dscache.c - Disk store cache for disk store backend.
|
|
*
|
|
* When Redis is configured for using disk as backend instead of memory, the
|
|
* memory is used as a cache, so that recently accessed keys are taken in
|
|
* memory for fast read and write operations.
|
|
*
|
|
* Modified keys are marked to be flushed on disk, and will be flushed
|
|
* as long as the maxium configured flush time elapsed.
|
|
*
|
|
* This file implements the whole caching subsystem and contains further
|
|
* documentation. */
|
|
|
|
/* TODO:
|
|
*
|
|
* WARNING: most of the following todo items and design issues are no
|
|
* longer relevant with the new design. Here as a checklist to see if
|
|
* some old ideas still apply.
|
|
*
|
|
* - What happens when an object is destroyed?
|
|
*
|
|
* If the object is destroyed since semantically it was deleted or
|
|
* replaced with something new, we don't care if there was a SAVE
|
|
* job pending for it. Anyway when the IO JOb will be created we'll get
|
|
* the pointer of the current value.
|
|
*
|
|
* If the object is already a REDIS_IO_SAVEINPROG object, then it is
|
|
* impossible that we get a decrRefCount() that will reach refcount of zero
|
|
* since the object is both in the dataset and in the io job entry.
|
|
*
|
|
* - What happens with MULTI/EXEC?
|
|
*
|
|
* Good question. Without some kind of versioning with a global counter
|
|
* it is not possible to have trasactions on disk, but they are still
|
|
* useful since from the point of view of memory and client bugs it is
|
|
* a protection anyway. Also it's useful for WATCH.
|
|
*
|
|
* Btw there is to check what happens when WATCH gets combined to keys
|
|
* that gets removed from the object cache. Should be save but better
|
|
* to check.
|
|
*
|
|
* - Check if/why INCR will not update the LRU info for the object.
|
|
*
|
|
* - Fix/Check the following race condition: a key gets a DEL so there is
|
|
* a write operation scheduled against this key. Later the same key will
|
|
* be the argument of a GET, but the write operation was still not
|
|
* completed (to delete the file). If the GET will be for some reason
|
|
* a blocking loading (via lookup) we can load the old value on memory.
|
|
*
|
|
* This problems can be fixed with negative caching. We can use it
|
|
* to optimize the system, but also when a key is deleted we mark
|
|
* it as non existing on disk as well (in a way that this cache
|
|
* entry can't be evicted, setting time to 0), then we avoid looking at
|
|
* the disk at all if the key can't be there. When an IO Job complete
|
|
* a deletion, we set the time of the negative caching to a non zero
|
|
* value so it will be evicted later.
|
|
*
|
|
* Are there other patterns like this where we load stale data?
|
|
*
|
|
* Also, make sure that key preloading is ONLY done for keys that are
|
|
* not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
|
|
* data from disk that should instead be deleted.
|
|
*
|
|
* - dsSet() should use rename(2) in order to avoid corruptions.
|
|
*
|
|
* - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
|
|
* impossible since anyway the io_keys stuff will work as lock?
|
|
*
|
|
* - Serialize special encoded things in a raw form.
|
|
*
|
|
* - When putting IO read operations on top of the queue, do this only if
|
|
* the already-on-top operation is not a save or if it is a save that
|
|
* is scheduled for later execution. If there is a save that is ready to
|
|
* fire, let's insert the load operation just before the first save that
|
|
* is scheduled for later exection for instance.
|
|
*
|
|
* - Support MULTI/EXEC transactions via a journal file, that is played on
|
|
* startup to check if there is cleanup to do. This way we can implement
|
|
* transactions with our simple file based KV store.
|
|
*/
|
|
|
|
/* Virtual Memory is composed mainly of two subsystems:
|
|
* - Blocking Virutal Memory
|
|
* - Threaded Virtual Memory I/O
|
|
* The two parts are not fully decoupled, but functions are split among two
|
|
* different sections of the source code (delimited by comments) in order to
|
|
* make more clear what functionality is about the blocking VM and what about
|
|
* the threaded (not blocking) VM.
|
|
*
|
|
* Redis VM design:
|
|
*
|
|
* Redis VM is a blocking VM (one that blocks reading swapped values from
|
|
* disk into memory when a value swapped out is needed in memory) that is made
|
|
* unblocking by trying to examine the command argument vector in order to
|
|
* load in background values that will likely be needed in order to exec
|
|
* the command. The command is executed only once all the relevant keys
|
|
* are loaded into memory.
|
|
*
|
|
* This basically is almost as simple of a blocking VM, but almost as parallel
|
|
* as a fully non-blocking VM.
|
|
*/
|
|
|
|
void spawnIOThread(void);
|
|
int cacheScheduleIOPushJobs(int flags);
|
|
int processActiveIOJobs(int max);
|
|
|
|
/* =================== Virtual Memory - Blocking Side ====================== */
|
|
|
|
void dsInit(void) {
|
|
int pipefds[2];
|
|
size_t stacksize;
|
|
|
|
zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
|
|
|
|
redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
|
|
/* Open Disk Store */
|
|
if (dsOpen() != REDIS_OK) {
|
|
redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
|
|
exit(1);
|
|
};
|
|
|
|
/* Initialize threaded I/O for Object Cache */
|
|
server.io_newjobs = listCreate();
|
|
server.io_processing = listCreate();
|
|
server.io_processed = listCreate();
|
|
server.io_ready_clients = listCreate();
|
|
pthread_mutex_init(&server.io_mutex,NULL);
|
|
pthread_cond_init(&server.io_condvar,NULL);
|
|
pthread_mutex_init(&server.bgsavethread_mutex,NULL);
|
|
server.io_active_threads = 0;
|
|
if (pipe(pipefds) == -1) {
|
|
redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
|
|
,strerror(errno));
|
|
exit(1);
|
|
}
|
|
server.io_ready_pipe_read = pipefds[0];
|
|
server.io_ready_pipe_write = pipefds[1];
|
|
redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
|
|
/* LZF requires a lot of stack */
|
|
pthread_attr_init(&server.io_threads_attr);
|
|
pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
|
|
|
|
/* Solaris may report a stacksize of 0, let's set it to 1 otherwise
|
|
* multiplying it by 2 in the while loop later will not really help ;) */
|
|
if (!stacksize) stacksize = 1;
|
|
|
|
while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
|
|
pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
|
|
/* Listen for events in the threaded I/O pipe */
|
|
if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
|
|
vmThreadedIOCompletedJob, NULL) == AE_ERR)
|
|
oom("creating file event");
|
|
|
|
/* Spawn our I/O thread */
|
|
spawnIOThread();
|
|
}
|
|
|
|
/* Compute how good candidate the specified object is for eviction.
|
|
* An higher number means a better candidate. */
|
|
double computeObjectSwappability(robj *o) {
|
|
/* actual age can be >= minage, but not < minage. As we use wrapping
|
|
* 21 bit clocks with minutes resolution for the LRU. */
|
|
return (double) estimateObjectIdleTime(o);
|
|
}
|
|
|
|
/* Try to free one entry from the diskstore object cache */
|
|
int cacheFreeOneEntry(void) {
|
|
int j, i;
|
|
struct dictEntry *best = NULL;
|
|
double best_swappability = 0;
|
|
redisDb *best_db = NULL;
|
|
robj *val;
|
|
sds key;
|
|
|
|
for (j = 0; j < server.dbnum; j++) {
|
|
redisDb *db = server.db+j;
|
|
/* Why maxtries is set to 100?
|
|
* Because this way (usually) we'll find 1 object even if just 1% - 2%
|
|
* are swappable objects */
|
|
int maxtries = 100;
|
|
|
|
for (i = 0; i < 5 && dictSize(db->dict); i++) {
|
|
dictEntry *de;
|
|
double swappability;
|
|
robj keyobj;
|
|
sds keystr;
|
|
|
|
if (maxtries) maxtries--;
|
|
de = dictGetRandomKey(db->dict);
|
|
keystr = dictGetEntryKey(de);
|
|
val = dictGetEntryVal(de);
|
|
initStaticStringObject(keyobj,keystr);
|
|
|
|
/* Don't remove objects that are currently target of a
|
|
* read or write operation. */
|
|
if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
|
|
if (maxtries) i--; /* don't count this try */
|
|
continue;
|
|
}
|
|
swappability = computeObjectSwappability(val);
|
|
if (!best || swappability > best_swappability) {
|
|
best = de;
|
|
best_swappability = swappability;
|
|
best_db = db;
|
|
}
|
|
}
|
|
}
|
|
if (best == NULL) {
|
|
/* Not able to free a single object? we should check if our
|
|
* IO queues have stuff in queue, and try to consume the queue
|
|
* otherwise we'll use an infinite amount of memory if changes to
|
|
* the dataset are faster than I/O */
|
|
if (listLength(server.cache_io_queue) > 0) {
|
|
redisLog(REDIS_DEBUG,"--- Busy waiting IO to reclaim memory");
|
|
cacheScheduleIOPushJobs(REDIS_IO_ASAP);
|
|
processActiveIOJobs(1);
|
|
return REDIS_OK;
|
|
}
|
|
/* Nothing to free at all... */
|
|
return REDIS_ERR;
|
|
}
|
|
key = dictGetEntryKey(best);
|
|
val = dictGetEntryVal(best);
|
|
|
|
redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
|
|
key, best_swappability);
|
|
|
|
/* Delete this key from memory */
|
|
{
|
|
robj *kobj = createStringObject(key,sdslen(key));
|
|
dbDelete(best_db,kobj);
|
|
decrRefCount(kobj);
|
|
}
|
|
return REDIS_OK;
|
|
}
|
|
|
|
/* ==================== Disk store negative caching ========================
|
|
*
|
|
* When disk store is enabled, we need negative caching, that is, to remember
|
|
* keys that are for sure *not* on the disk key-value store.
|
|
*
|
|
* This is usefuls because without negative caching cache misses will cost us
|
|
* a disk lookup, even if the same non existing key is accessed again and again.
|
|
*
|
|
* With negative caching we remember that the key is not on disk, so if it's
|
|
* not in memory and we have a negative cache entry, we don't try a disk
|
|
* access at all.
|
|
*/
|
|
|
|
/* Returns true if the specified key may exists on disk, that is, we don't
|
|
* have an entry in our negative cache for this key */
|
|
int cacheKeyMayExist(redisDb *db, robj *key) {
|
|
return dictFind(db->io_negcache,key) == NULL;
|
|
}
|
|
|
|
/* Set the specified key as an entry that may possibily exist on disk, that is,
|
|
* remove the negative cache entry for this key if any. */
|
|
void cacheSetKeyMayExist(redisDb *db, robj *key) {
|
|
dictDelete(db->io_negcache,key);
|
|
}
|
|
|
|
/* Set the specified key as non existing on disk, that is, create a negative
|
|
* cache entry for this key. */
|
|
void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
|
|
if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
|
|
incrRefCount(key);
|
|
}
|
|
}
|
|
|
|
/* Remove one entry from negative cache using approximated LRU. */
|
|
int negativeCacheEvictOneEntry(void) {
|
|
struct dictEntry *de;
|
|
robj *best = NULL;
|
|
redisDb *best_db = NULL;
|
|
time_t time, best_time = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < server.dbnum; j++) {
|
|
redisDb *db = server.db+j;
|
|
int i;
|
|
|
|
if (dictSize(db->io_negcache) == 0) continue;
|
|
for (i = 0; i < 3; i++) {
|
|
de = dictGetRandomKey(db->io_negcache);
|
|
time = (time_t) dictGetEntryVal(de);
|
|
|
|
if (best == NULL || time < best_time) {
|
|
best = dictGetEntryKey(de);
|
|
best_db = db;
|
|
best_time = time;
|
|
}
|
|
}
|
|
}
|
|
if (best) {
|
|
dictDelete(best_db->io_negcache,best);
|
|
return REDIS_OK;
|
|
} else {
|
|
return REDIS_ERR;
|
|
}
|
|
}
|
|
|
|
/* ================== Disk store cache - Threaded I/O ====================== */
|
|
|
|
void freeIOJob(iojob *j) {
|
|
decrRefCount(j->key);
|
|
/* j->val can be NULL if the job is about deleting the key from disk. */
|
|
if (j->val) decrRefCount(j->val);
|
|
zfree(j);
|
|
}
|
|
|
|
/* Every time a thread finished a Job, it writes a byte into the write side
|
|
* of an unix pipe in order to "awake" the main thread, and this function
|
|
* is called.
|
|
*
|
|
* If privdata == NULL the function will try to put more jobs in the queue
|
|
* of IO jobs to process as more room is made. privdata is equal to NULL
|
|
* when the function is called from the event loop, so we want to push
|
|
* more IO jobs in the queue. Instead when the function is called by
|
|
* other functions that want to create a write-barrier to avoid race
|
|
* conditions we don't push new jobs in the queue. */
|
|
void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
|
|
int mask)
|
|
{
|
|
char buf[1];
|
|
int retval, processed = 0, toprocess = -1;
|
|
REDIS_NOTUSED(el);
|
|
REDIS_NOTUSED(mask);
|
|
|
|
/* For every byte we read in the read side of the pipe, there is one
|
|
* I/O job completed to process. */
|
|
while((retval = read(fd,buf,1)) == 1) {
|
|
iojob *j;
|
|
listNode *ln;
|
|
|
|
redisLog(REDIS_DEBUG,"Processing I/O completed job");
|
|
|
|
/* Get the processed element (the oldest one) */
|
|
lockThreadedIO();
|
|
redisAssert(listLength(server.io_processed) != 0);
|
|
if (toprocess == -1) {
|
|
toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
|
|
if (toprocess <= 0) toprocess = 1;
|
|
}
|
|
ln = listFirst(server.io_processed);
|
|
j = ln->value;
|
|
listDelNode(server.io_processed,ln);
|
|
unlockThreadedIO();
|
|
|
|
/* Post process it in the main thread, as there are things we
|
|
* can do just here to avoid race conditions and/or invasive locks */
|
|
redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
|
|
(j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
|
|
(unsigned char*)j->key->ptr);
|
|
if (j->type == REDIS_IOJOB_LOAD) {
|
|
/* Create the key-value pair in the in-memory database */
|
|
if (j->val != NULL) {
|
|
/* Note: it's possible that the key is already in memory
|
|
* due to a blocking load operation. */
|
|
if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
|
|
incrRefCount(j->val);
|
|
if (j->expire != -1) setExpire(j->db,j->key,j->expire);
|
|
}
|
|
} else {
|
|
/* Key not found on disk. If it is also not in memory
|
|
* as a cached object, nor there is a job writing it
|
|
* in background, we are sure the key does not exist
|
|
* currently.
|
|
*
|
|
* So we set a negative cache entry avoiding that the
|
|
* resumed client will block load what does not exist... */
|
|
if (dictFind(j->db->dict,j->key->ptr) == NULL &&
|
|
(cacheScheduleIOGetFlags(j->db,j->key) &
|
|
(REDIS_IO_SAVE|REDIS_IO_SAVEINPROG)) == 0)
|
|
{
|
|
cacheSetKeyDoesNotExist(j->db,j->key);
|
|
}
|
|
}
|
|
cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
|
|
handleClientsBlockedOnSwappedKey(j->db,j->key);
|
|
} else if (j->type == REDIS_IOJOB_SAVE) {
|
|
cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
|
|
}
|
|
freeIOJob(j);
|
|
processed++;
|
|
if (privdata == NULL) cacheScheduleIOPushJobs(0);
|
|
if (processed == toprocess) return;
|
|
}
|
|
if (retval < 0 && errno != EAGAIN) {
|
|
redisLog(REDIS_WARNING,
|
|
"WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
|
|
strerror(errno));
|
|
}
|
|
}
|
|
|
|
void lockThreadedIO(void) {
|
|
pthread_mutex_lock(&server.io_mutex);
|
|
}
|
|
|
|
void unlockThreadedIO(void) {
|
|
pthread_mutex_unlock(&server.io_mutex);
|
|
}
|
|
|
|
void *IOThreadEntryPoint(void *arg) {
|
|
iojob *j;
|
|
listNode *ln;
|
|
REDIS_NOTUSED(arg);
|
|
long long start;
|
|
|
|
pthread_detach(pthread_self());
|
|
lockThreadedIO();
|
|
while(1) {
|
|
/* Get a new job to process */
|
|
if (listLength(server.io_newjobs) == 0) {
|
|
/* Wait for more work to do */
|
|
redisLog(REDIS_DEBUG,"[T] wait for signal");
|
|
pthread_cond_wait(&server.io_condvar,&server.io_mutex);
|
|
redisLog(REDIS_DEBUG,"[T] signal received");
|
|
continue;
|
|
}
|
|
start = ustime();
|
|
redisLog(REDIS_DEBUG,"[T] %ld IO jobs to process",
|
|
listLength(server.io_newjobs));
|
|
ln = listFirst(server.io_newjobs);
|
|
j = ln->value;
|
|
listDelNode(server.io_newjobs,ln);
|
|
/* Add the job in the processing queue */
|
|
listAddNodeTail(server.io_processing,j);
|
|
ln = listLast(server.io_processing); /* We use ln later to remove it */
|
|
unlockThreadedIO();
|
|
|
|
redisLog(REDIS_DEBUG,"[T] %ld: new job type %s: %p about key '%s'",
|
|
(long) pthread_self(),
|
|
(j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
|
|
(void*)j, (char*)j->key->ptr);
|
|
|
|
/* Process the Job */
|
|
if (j->type == REDIS_IOJOB_LOAD) {
|
|
time_t expire;
|
|
|
|
j->val = dsGet(j->db,j->key,&expire);
|
|
if (j->val) j->expire = expire;
|
|
} else if (j->type == REDIS_IOJOB_SAVE) {
|
|
if (j->val) {
|
|
dsSet(j->db,j->key,j->val,j->expire);
|
|
} else {
|
|
dsDel(j->db,j->key);
|
|
}
|
|
}
|
|
|
|
/* Done: insert the job into the processed queue */
|
|
redisLog(REDIS_DEBUG,"[T] %ld completed the job: %p (key %s)",
|
|
(long) pthread_self(), (void*)j, (char*)j->key->ptr);
|
|
|
|
redisLog(REDIS_DEBUG,"[T] lock IO");
|
|
lockThreadedIO();
|
|
redisLog(REDIS_DEBUG,"[T] IO locked");
|
|
listDelNode(server.io_processing,ln);
|
|
listAddNodeTail(server.io_processed,j);
|
|
|
|
/* Signal the main thread there is new stuff to process */
|
|
redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
|
|
redisLog(REDIS_DEBUG,"TIME (%c): %lld\n", j->type == REDIS_IOJOB_LOAD ? 'L' : 'S', ustime()-start);
|
|
}
|
|
/* never reached, but that's the full pattern... */
|
|
unlockThreadedIO();
|
|
return NULL;
|
|
}
|
|
|
|
void spawnIOThread(void) {
|
|
pthread_t thread;
|
|
sigset_t mask, omask;
|
|
int err;
|
|
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask,SIGCHLD);
|
|
sigaddset(&mask,SIGHUP);
|
|
sigaddset(&mask,SIGPIPE);
|
|
pthread_sigmask(SIG_SETMASK, &mask, &omask);
|
|
while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
|
|
redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
|
|
strerror(err));
|
|
usleep(1000000);
|
|
}
|
|
pthread_sigmask(SIG_SETMASK, &omask, NULL);
|
|
server.io_active_threads++;
|
|
}
|
|
|
|
/* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
|
|
* From our point of view an IO job processed means that the count of
|
|
* server.io_processed must increase by one.
|
|
*
|
|
* If max is -1, all the pending IO jobs will be processed.
|
|
*
|
|
* Returns the number of IO jobs processed.
|
|
*
|
|
* NOTE: while this may appear like a busy loop, we are actually blocked
|
|
* by IO since we continuously acquire/release the IO lock. */
|
|
int processActiveIOJobs(int max) {
|
|
int processed = 0;
|
|
|
|
while(max == -1 || max > 0) {
|
|
int io_processed_len;
|
|
|
|
redisLog(REDIS_DEBUG,"[P] lock IO");
|
|
lockThreadedIO();
|
|
redisLog(REDIS_DEBUG,"Waiting IO jobs processing: new:%d proessing:%d processed:%d",listLength(server.io_newjobs),listLength(server.io_processing),listLength(server.io_processed));
|
|
|
|
if (listLength(server.io_newjobs) == 0 &&
|
|
listLength(server.io_processing) == 0)
|
|
{
|
|
/* There is nothing more to process */
|
|
redisLog(REDIS_DEBUG,"[P] Nothing to process, unlock IO, return");
|
|
unlockThreadedIO();
|
|
break;
|
|
}
|
|
|
|
#if 1
|
|
/* If there are new jobs we need to signal the thread to
|
|
* process the next one. FIXME: drop this if useless. */
|
|
redisLog(REDIS_DEBUG,"[P] waitEmptyIOJobsQueue: new %d, processing %d, processed %d",
|
|
listLength(server.io_newjobs),
|
|
listLength(server.io_processing),
|
|
listLength(server.io_processed));
|
|
|
|
if (listLength(server.io_newjobs)) {
|
|
redisLog(REDIS_DEBUG,"[P] There are new jobs, signal");
|
|
pthread_cond_signal(&server.io_condvar);
|
|
}
|
|
#endif
|
|
|
|
/* Check if we can process some finished job */
|
|
io_processed_len = listLength(server.io_processed);
|
|
redisLog(REDIS_DEBUG,"[P] Unblock IO");
|
|
unlockThreadedIO();
|
|
redisLog(REDIS_DEBUG,"[P] Wait");
|
|
usleep(10000);
|
|
if (io_processed_len) {
|
|
vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
|
|
(void*)0xdeadbeef,0);
|
|
processed++;
|
|
if (max != -1) max--;
|
|
}
|
|
}
|
|
return processed;
|
|
}
|
|
|
|
void waitEmptyIOJobsQueue(void) {
|
|
processActiveIOJobs(-1);
|
|
}
|
|
|
|
/* Process up to 'max' IO Jobs already completed by threads but still waiting
|
|
* processing from the main thread.
|
|
*
|
|
* If max == -1 all the pending jobs are processed.
|
|
*
|
|
* The number of processed jobs is returned. */
|
|
int processPendingIOJobs(int max) {
|
|
int processed = 0;
|
|
|
|
while(max == -1 || max > 0) {
|
|
int io_processed_len;
|
|
|
|
lockThreadedIO();
|
|
io_processed_len = listLength(server.io_processed);
|
|
unlockThreadedIO();
|
|
if (io_processed_len == 0) break;
|
|
vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
|
|
(void*)0xdeadbeef,0);
|
|
if (max != -1) max--;
|
|
processed++;
|
|
}
|
|
return processed;
|
|
}
|
|
|
|
void processAllPendingIOJobs(void) {
|
|
processPendingIOJobs(-1);
|
|
}
|
|
|
|
/* This function must be called while with threaded IO locked */
|
|
void queueIOJob(iojob *j) {
|
|
redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
|
|
(void*)j, j->type, (char*)j->key->ptr);
|
|
listAddNodeTail(server.io_newjobs,j);
|
|
}
|
|
|
|
/* Consume all the IO scheduled operations, and all the thread IO jobs
|
|
* so that eventually the state of diskstore is a point-in-time snapshot.
|
|
*
|
|
* This is useful when we need to BGSAVE with diskstore enabled. */
|
|
void cacheForcePointInTime(void) {
|
|
redisLog(REDIS_NOTICE,"Diskstore: synching on disk to reach point-in-time state.");
|
|
while (listLength(server.cache_io_queue) != 0) {
|
|
cacheScheduleIOPushJobs(REDIS_IO_ASAP);
|
|
processActiveIOJobs(1);
|
|
}
|
|
waitEmptyIOJobsQueue();
|
|
processAllPendingIOJobs();
|
|
}
|
|
|
|
void cacheCreateIOJob(int type, redisDb *db, robj *key, robj *val, time_t expire) {
|
|
iojob *j;
|
|
|
|
j = zmalloc(sizeof(*j));
|
|
j->type = type;
|
|
j->db = db;
|
|
j->key = key;
|
|
incrRefCount(key);
|
|
j->val = val;
|
|
if (val) incrRefCount(val);
|
|
j->expire = expire;
|
|
|
|
lockThreadedIO();
|
|
queueIOJob(j);
|
|
pthread_cond_signal(&server.io_condvar);
|
|
unlockThreadedIO();
|
|
}
|
|
|
|
/* ============= Disk store cache - Scheduling of IO operations =============
|
|
*
|
|
* We use a queue and an hash table to hold the state of IO operations
|
|
* so that's fast to lookup if there is already an IO operation in queue
|
|
* for a given key.
|
|
*
|
|
* There are two types of IO operations for a given key:
|
|
* REDIS_IO_LOAD and REDIS_IO_SAVE.
|
|
*
|
|
* The function cacheScheduleIO() function pushes the specified IO operation
|
|
* in the queue, but avoid adding the same key for the same operation
|
|
* multiple times, thanks to the associated hash table.
|
|
*
|
|
* We take a set of flags per every key, so when the scheduled IO operation
|
|
* gets moved from the scheduled queue to the actual IO Jobs queue that
|
|
* is processed by the IO thread, we flag it as IO_LOADINPROG or
|
|
* IO_SAVEINPROG.
|
|
*
|
|
* So for every given key we always know if there is some IO operation
|
|
* scheduled, or in progress, for this key.
|
|
*
|
|
* NOTE: all this is very important in order to guarantee correctness of
|
|
* the Disk Store Cache. Jobs are always queued here. Load jobs are
|
|
* queued at the head for faster execution only in the case there is not
|
|
* already a write operation of some kind for this job.
|
|
*
|
|
* So we have ordering, but can do exceptions when there are no already
|
|
* operations for a given key. Also when we need to block load a given
|
|
* key, for an immediate lookup operation, we can check if the key can
|
|
* be accessed synchronously without race conditions (no IN PROGRESS
|
|
* operations for this key), otherwise we blocking wait for completion. */
|
|
|
|
#define REDIS_IO_LOAD 1
|
|
#define REDIS_IO_SAVE 2
|
|
#define REDIS_IO_LOADINPROG 4
|
|
#define REDIS_IO_SAVEINPROG 8
|
|
|
|
void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
|
|
struct dictEntry *de = dictFind(db->io_queued,key);
|
|
|
|
if (!de) {
|
|
dictAdd(db->io_queued,key,(void*)flag);
|
|
incrRefCount(key);
|
|
return;
|
|
} else {
|
|
long flags = (long) dictGetEntryVal(de);
|
|
|
|
if (flags & flag) {
|
|
redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
|
|
redisAssert(!(flags & flag));
|
|
}
|
|
flags |= flag;
|
|
dictGetEntryVal(de) = (void*) flags;
|
|
}
|
|
}
|
|
|
|
void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
|
|
struct dictEntry *de = dictFind(db->io_queued,key);
|
|
long flags;
|
|
|
|
redisAssert(de != NULL);
|
|
flags = (long) dictGetEntryVal(de);
|
|
redisAssert(flags & flag);
|
|
flags &= ~flag;
|
|
if (flags == 0) {
|
|
dictDelete(db->io_queued,key);
|
|
} else {
|
|
dictGetEntryVal(de) = (void*) flags;
|
|
}
|
|
}
|
|
|
|
int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
|
|
struct dictEntry *de = dictFind(db->io_queued,key);
|
|
|
|
return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
|
|
}
|
|
|
|
void cacheScheduleIO(redisDb *db, robj *key, int type) {
|
|
ioop *op;
|
|
long flags;
|
|
|
|
if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
|
|
|
|
redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
|
|
key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
|
|
cacheScheduleIOAddFlag(db,key,type);
|
|
op = zmalloc(sizeof(*op));
|
|
op->type = type;
|
|
op->db = db;
|
|
op->key = key;
|
|
incrRefCount(key);
|
|
op->ctime = time(NULL);
|
|
|
|
/* Give priority to load operations if there are no save already
|
|
* in queue for the same key. */
|
|
if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
|
|
listAddNodeHead(server.cache_io_queue, op);
|
|
cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS);
|
|
} else {
|
|
/* FIXME: probably when this happens we want to at least move
|
|
* the write job about this queue on top, and set the creation time
|
|
* to a value that will force processing ASAP. */
|
|
listAddNodeTail(server.cache_io_queue, op);
|
|
}
|
|
}
|
|
|
|
/* Push scheduled IO operations into IO Jobs that the IO thread can process.
|
|
*
|
|
* If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
|
|
* useful since it's safe to push LOAD IO jobs from any place of the code, while
|
|
* SAVE io jobs should never be pushed while we are processing a command
|
|
* (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
|
|
* state.
|
|
*
|
|
* The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
|
|
* scheduled completion time, but just do the operation ASAP. This is useful
|
|
* when we need to reclaim memory from the IO queue.
|
|
*/
|
|
#define MAX_IO_JOBS_QUEUE 10
|
|
int cacheScheduleIOPushJobs(int flags) {
|
|
time_t now = time(NULL);
|
|
listNode *ln;
|
|
int jobs, topush = 0, pushed = 0;
|
|
|
|
/* Don't push new jobs if there is a threaded BGSAVE in progress. */
|
|
if (server.bgsavethread != (pthread_t) -1) return 0;
|
|
|
|
/* Sync stuff on disk, but only if we have less
|
|
* than MAX_IO_JOBS_QUEUE IO jobs. */
|
|
lockThreadedIO();
|
|
jobs = listLength(server.io_newjobs);
|
|
unlockThreadedIO();
|
|
|
|
topush = MAX_IO_JOBS_QUEUE-jobs;
|
|
if (topush < 0) topush = 0;
|
|
if (topush > (signed)listLength(server.cache_io_queue))
|
|
topush = listLength(server.cache_io_queue);
|
|
|
|
while((ln = listFirst(server.cache_io_queue)) != NULL) {
|
|
ioop *op = ln->value;
|
|
struct dictEntry *de;
|
|
robj *val;
|
|
|
|
if (!topush) break;
|
|
topush--;
|
|
|
|
if (op->type != REDIS_IO_LOAD && flags & REDIS_IO_ONLYLOADS) break;
|
|
|
|
/* Don't execute SAVE before the scheduled time for completion */
|
|
if (op->type == REDIS_IO_SAVE && !(flags & REDIS_IO_ASAP) &&
|
|
(now - op->ctime) < server.cache_flush_delay) break;
|
|
|
|
/* Don't add a SAVE job in the IO thread queue if there is already
|
|
* a save in progress for the same key. */
|
|
if (op->type == REDIS_IO_SAVE &&
|
|
cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
|
|
{
|
|
/* Move the operation at the end of the list if there
|
|
* are other operations, so we can try to process the next one.
|
|
* Otherwise break, nothing to do here. */
|
|
if (listLength(server.cache_io_queue) > 1) {
|
|
listDelNode(server.cache_io_queue,ln);
|
|
listAddNodeTail(server.cache_io_queue,op);
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
|
|
op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
|
|
|
|
if (op->type == REDIS_IO_LOAD) {
|
|
cacheCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL,0);
|
|
} else {
|
|
time_t expire = -1;
|
|
|
|
/* Lookup the key, in order to put the current value in the IO
|
|
* Job. Otherwise if the key does not exists we schedule a disk
|
|
* store delete operation, setting the value to NULL. */
|
|
de = dictFind(op->db->dict,op->key->ptr);
|
|
if (de) {
|
|
val = dictGetEntryVal(de);
|
|
expire = getExpire(op->db,op->key);
|
|
} else {
|
|
/* Setting the value to NULL tells the IO thread to delete
|
|
* the key on disk. */
|
|
val = NULL;
|
|
}
|
|
cacheCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val,expire);
|
|
}
|
|
/* Mark the operation as in progress. */
|
|
cacheScheduleIODelFlag(op->db,op->key,op->type);
|
|
cacheScheduleIOAddFlag(op->db,op->key,
|
|
(op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
|
|
REDIS_IO_SAVEINPROG);
|
|
/* Finally remove the operation from the queue.
|
|
* But we'll have trace of it in the hash table. */
|
|
listDelNode(server.cache_io_queue,ln);
|
|
decrRefCount(op->key);
|
|
zfree(op);
|
|
pushed++;
|
|
}
|
|
return pushed;
|
|
}
|
|
|
|
void cacheCron(void) {
|
|
/* Push jobs */
|
|
cacheScheduleIOPushJobs(0);
|
|
|
|
/* Reclaim memory from the object cache */
|
|
while (server.ds_enabled && zmalloc_used_memory() >
|
|
server.cache_max_memory)
|
|
{
|
|
int done = 0;
|
|
|
|
if (cacheFreeOneEntry() == REDIS_OK) done++;
|
|
if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
|
|
if (done == 0) break; /* nothing more to free */
|
|
}
|
|
}
|
|
|
|
/* ========== Disk store cache - Blocking clients on missing keys =========== */
|
|
|
|
/* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
|
|
* If the key is already in memory we don't need to block.
|
|
*
|
|
* FIXME: we should try if it's actually better to suspend the client
|
|
* accessing an object that is being saved, and awake it only when
|
|
* the saving was completed.
|
|
*
|
|
* Otherwise if the key is not in memory, we block the client and start
|
|
* an IO Job to load it:
|
|
*
|
|
* the key is added to the io_keys list in the client structure, and also
|
|
* in the hash table mapping swapped keys to waiting clients, that is,
|
|
* server.io_waited_keys. */
|
|
int waitForSwappedKey(redisClient *c, robj *key) {
|
|
struct dictEntry *de;
|
|
list *l;
|
|
|
|
/* Return ASAP if the key is in memory */
|
|
de = dictFind(c->db->dict,key->ptr);
|
|
if (de != NULL) return 0;
|
|
|
|
/* Don't wait for keys we are sure are not on disk either */
|
|
if (!cacheKeyMayExist(c->db,key)) return 0;
|
|
|
|
/* Add the key to the list of keys this client is waiting for.
|
|
* This maps clients to keys they are waiting for. */
|
|
listAddNodeTail(c->io_keys,key);
|
|
incrRefCount(key);
|
|
|
|
/* Add the client to the swapped keys => clients waiting map. */
|
|
de = dictFind(c->db->io_keys,key);
|
|
if (de == NULL) {
|
|
int retval;
|
|
|
|
/* For every key we take a list of clients blocked for it */
|
|
l = listCreate();
|
|
retval = dictAdd(c->db->io_keys,key,l);
|
|
incrRefCount(key);
|
|
redisAssert(retval == DICT_OK);
|
|
} else {
|
|
l = dictGetEntryVal(de);
|
|
}
|
|
listAddNodeTail(l,c);
|
|
|
|
/* Are we already loading the key from disk? If not create a job */
|
|
if (de == NULL) {
|
|
int flags = cacheScheduleIOGetFlags(c->db,key);
|
|
|
|
/* It is possible that even if there are no clients waiting for
|
|
* a load operation, still we have a load operation in progress.
|
|
* For instance think to a client performing a GET and then
|
|
* closing the connection */
|
|
if ((flags & (REDIS_IO_LOAD|REDIS_IO_LOADINPROG)) == 0)
|
|
cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Is this client attempting to run a command against swapped keys?
|
|
* If so, block it ASAP, load the keys in background, then resume it.
|
|
*
|
|
* The important idea about this function is that it can fail! If keys will
|
|
* still be swapped when the client is resumed, this key lookups will
|
|
* just block loading keys from disk. In practical terms this should only
|
|
* happen with SORT BY command or if there is a bug in this function.
|
|
*
|
|
* Return 1 if the client is marked as blocked, 0 if the client can
|
|
* continue as the keys it is going to access appear to be in memory. */
|
|
int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
|
|
int *keyindex, numkeys, j, i;
|
|
|
|
/* EXEC is a special case, we need to preload all the commands
|
|
* queued into the transaction */
|
|
if (cmd->proc == execCommand) {
|
|
struct redisCommand *mcmd;
|
|
robj **margv;
|
|
int margc;
|
|
|
|
if (!(c->flags & REDIS_MULTI)) return 0;
|
|
for (i = 0; i < c->mstate.count; i++) {
|
|
mcmd = c->mstate.commands[i].cmd;
|
|
margc = c->mstate.commands[i].argc;
|
|
margv = c->mstate.commands[i].argv;
|
|
|
|
keyindex = getKeysFromCommand(mcmd,margv,margc,&numkeys,
|
|
REDIS_GETKEYS_PRELOAD);
|
|
for (j = 0; j < numkeys; j++) {
|
|
redisLog(REDIS_DEBUG,"Preloading %s",
|
|
(char*)margv[keyindex[j]]->ptr);
|
|
waitForSwappedKey(c,margv[keyindex[j]]);
|
|
}
|
|
getKeysFreeResult(keyindex);
|
|
}
|
|
} else {
|
|
keyindex = getKeysFromCommand(cmd,c->argv,c->argc,&numkeys,
|
|
REDIS_GETKEYS_PRELOAD);
|
|
for (j = 0; j < numkeys; j++) {
|
|
redisLog(REDIS_DEBUG,"Preloading %s",
|
|
(char*)c->argv[keyindex[j]]->ptr);
|
|
waitForSwappedKey(c,c->argv[keyindex[j]]);
|
|
}
|
|
getKeysFreeResult(keyindex);
|
|
}
|
|
|
|
/* If the client was blocked for at least one key, mark it as blocked. */
|
|
if (listLength(c->io_keys)) {
|
|
c->flags |= REDIS_IO_WAIT;
|
|
aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
|
|
server.cache_blocked_clients++;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Remove the 'key' from the list of blocked keys for a given client.
|
|
*
|
|
* The function returns 1 when there are no longer blocking keys after
|
|
* the current one was removed (and the client can be unblocked). */
|
|
int dontWaitForSwappedKey(redisClient *c, robj *key) {
|
|
list *l;
|
|
listNode *ln;
|
|
listIter li;
|
|
struct dictEntry *de;
|
|
|
|
/* The key object might be destroyed when deleted from the c->io_keys
|
|
* list (and the "key" argument is physically the same object as the
|
|
* object inside the list), so we need to protect it. */
|
|
incrRefCount(key);
|
|
|
|
/* Remove the key from the list of keys this client is waiting for. */
|
|
listRewind(c->io_keys,&li);
|
|
while ((ln = listNext(&li)) != NULL) {
|
|
if (equalStringObjects(ln->value,key)) {
|
|
listDelNode(c->io_keys,ln);
|
|
break;
|
|
}
|
|
}
|
|
redisAssert(ln != NULL);
|
|
|
|
/* Remove the client form the key => waiting clients map. */
|
|
de = dictFind(c->db->io_keys,key);
|
|
redisAssert(de != NULL);
|
|
l = dictGetEntryVal(de);
|
|
ln = listSearchKey(l,c);
|
|
redisAssert(ln != NULL);
|
|
listDelNode(l,ln);
|
|
if (listLength(l) == 0)
|
|
dictDelete(c->db->io_keys,key);
|
|
|
|
decrRefCount(key);
|
|
return listLength(c->io_keys) == 0;
|
|
}
|
|
|
|
/* Every time we now a key was loaded back in memory, we handle clients
|
|
* waiting for this key if any. */
|
|
void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
|
|
struct dictEntry *de;
|
|
list *l;
|
|
listNode *ln;
|
|
int len;
|
|
|
|
de = dictFind(db->io_keys,key);
|
|
if (!de) return;
|
|
|
|
l = dictGetEntryVal(de);
|
|
len = listLength(l);
|
|
/* Note: we can't use something like while(listLength(l)) as the list
|
|
* can be freed by the calling function when we remove the last element. */
|
|
while (len--) {
|
|
ln = listFirst(l);
|
|
redisClient *c = ln->value;
|
|
|
|
if (dontWaitForSwappedKey(c,key)) {
|
|
/* Put the client in the list of clients ready to go as we
|
|
* loaded all the keys about it. */
|
|
listAddNodeTail(server.io_ready_clients,c);
|
|
}
|
|
}
|
|
}
|