mirror of
https://github.com/fluencelabs/redis
synced 2025-03-17 08:00:49 +00:00
LOLWUT: split the command from version-specific implementations.
This commit is contained in:
parent
411f4b4c12
commit
c560ade831
@ -144,7 +144,7 @@ endif
|
||||
|
||||
REDIS_SERVER_NAME=redis-server
|
||||
REDIS_SENTINEL_NAME=redis-sentinel
|
||||
REDIS_SERVER_OBJ=adlist.o quicklist.o ae.o anet.o dict.o server.o sds.o zmalloc.o lzf_c.o lzf_d.o pqsort.o zipmap.o sha1.o ziplist.o release.o networking.o util.o object.o db.o replication.o rdb.o t_string.o t_list.o t_set.o t_zset.o t_hash.o config.o aof.o pubsub.o multi.o debug.o sort.o intset.o syncio.o cluster.o crc16.o endianconv.o slowlog.o scripting.o bio.o rio.o rand.o memtest.o crc64.o bitops.o sentinel.o notify.o setproctitle.o blocked.o hyperloglog.o latency.o sparkline.o redis-check-rdb.o redis-check-aof.o geo.o lazyfree.o module.o evict.o expire.o geohash.o geohash_helper.o childinfo.o defrag.o siphash.o rax.o t_stream.o listpack.o localtime.o lolwut.o
|
||||
REDIS_SERVER_OBJ=adlist.o quicklist.o ae.o anet.o dict.o server.o sds.o zmalloc.o lzf_c.o lzf_d.o pqsort.o zipmap.o sha1.o ziplist.o release.o networking.o util.o object.o db.o replication.o rdb.o t_string.o t_list.o t_set.o t_zset.o t_hash.o config.o aof.o pubsub.o multi.o debug.o sort.o intset.o syncio.o cluster.o crc16.o endianconv.o slowlog.o scripting.o bio.o rio.o rand.o memtest.o crc64.o bitops.o sentinel.o notify.o setproctitle.o blocked.o hyperloglog.o latency.o sparkline.o redis-check-rdb.o redis-check-aof.o geo.o lazyfree.o module.o evict.o expire.o geohash.o geohash_helper.o childinfo.o defrag.o siphash.o rax.o t_stream.o listpack.o localtime.o lolwut.o lolwut5.o
|
||||
REDIS_CLI_NAME=redis-cli
|
||||
REDIS_CLI_OBJ=anet.o adlist.o dict.o redis-cli.o zmalloc.o release.o anet.o ae.o crc64.o siphash.o crc16.o
|
||||
REDIS_BENCHMARK_NAME=redis-benchmark
|
||||
|
254
src/lolwut.c
254
src/lolwut.c
@ -34,249 +34,23 @@
|
||||
*/
|
||||
|
||||
#include "server.h"
|
||||
#include <math.h>
|
||||
|
||||
/* This structure represents our canvas. Drawing functions will take a pointer
|
||||
* to a canvas to write to it. Later the canvas can be rendered to a string
|
||||
* suitable to be printed on the screen, using unicode Braille characters. */
|
||||
typedef struct lwCanvas {
|
||||
int width;
|
||||
int height;
|
||||
char *pixels;
|
||||
} lwCanvas;
|
||||
void lolwut5Command(client *c);
|
||||
|
||||
/* Translate a group of 8 pixels (2x4 vertical rectangle) to the corresponding
|
||||
* braille character. The byte should correspond to the pixels arranged as
|
||||
* follows, where 0 is the least significant bit, and 7 the most significant
|
||||
* bit:
|
||||
*
|
||||
* 0 3
|
||||
* 1 4
|
||||
* 2 5
|
||||
* 6 7
|
||||
*
|
||||
* The corresponding utf8 encoded character is set into the three bytes
|
||||
* pointed by 'output'.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
void lwTranslatePixelsGroup(int byte, char *output) {
|
||||
int code = 0x2800 + byte;
|
||||
/* Convert to unicode. This is in the U0800-UFFFF range, so we need to
|
||||
* emit it like this in three bytes:
|
||||
* 1110xxxx 10xxxxxx 10xxxxxx. */
|
||||
output[0] = 0xE0 | (code >> 12); /* 1110-xxxx */
|
||||
output[1] = 0x80 | ((code >> 6) & 0x3F); /* 10-xxxxxx */
|
||||
output[2] = 0x80 | (code & 0x3F); /* 10-xxxxxx */
|
||||
}
|
||||
|
||||
/* Allocate and return a new canvas of the specified size. */
|
||||
lwCanvas *lwCreateCanvas(int width, int height) {
|
||||
lwCanvas *canvas = zmalloc(sizeof(*canvas));
|
||||
canvas->width = width;
|
||||
canvas->height = height;
|
||||
canvas->pixels = zmalloc(width*height);
|
||||
memset(canvas->pixels,0,width*height);
|
||||
return canvas;
|
||||
}
|
||||
|
||||
/* Free the canvas created by lwCreateCanvas(). */
|
||||
void lwFreeCanvas(lwCanvas *canvas) {
|
||||
zfree(canvas->pixels);
|
||||
zfree(canvas);
|
||||
}
|
||||
|
||||
/* Set a pixel to the specified color. Color is 0 or 1, where zero means no
|
||||
* dot will be displyed, and 1 means dot will be displayed.
|
||||
* Coordinates are arranged so that left-top corner is 0,0. You can write
|
||||
* out of the size of the canvas without issues. */
|
||||
void lwDrawPixel(lwCanvas *canvas, int x, int y, int color) {
|
||||
if (x < 0 || x >= canvas->width ||
|
||||
y < 0 || y >= canvas->height) return;
|
||||
canvas->pixels[x+y*canvas->width] = color;
|
||||
}
|
||||
|
||||
/* Return the value of the specified pixel on the canvas. */
|
||||
int lwGetPixel(lwCanvas *canvas, int x, int y) {
|
||||
if (x < 0 || x >= canvas->width ||
|
||||
y < 0 || y >= canvas->height) return 0;
|
||||
return canvas->pixels[x+y*canvas->width];
|
||||
}
|
||||
|
||||
/* Draw a line from x1,y1 to x2,y2 using the Bresenham algorithm. */
|
||||
void lwDrawLine(lwCanvas *canvas, int x1, int y1, int x2, int y2, int color) {
|
||||
int dx = abs(x2-x1);
|
||||
int dy = abs(y2-y1);
|
||||
int sx = (x1 < x2) ? 1 : -1;
|
||||
int sy = (y1 < y2) ? 1 : -1;
|
||||
int err = dx-dy, e2;
|
||||
|
||||
while(1) {
|
||||
lwDrawPixel(canvas,x1,y1,color);
|
||||
if (x1 == x2 && y1 == y2) break;
|
||||
e2 = err*2;
|
||||
if (e2 > -dy) {
|
||||
err -= dy;
|
||||
x1 += sx;
|
||||
}
|
||||
if (e2 < dx) {
|
||||
err += dx;
|
||||
y1 += sy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Draw a square centered at the specified x,y coordinates, with the specified
|
||||
* rotation angle and size. In order to write a rotated square, we use the
|
||||
* trivial fact that the parametric equation:
|
||||
*
|
||||
* x = sin(k)
|
||||
* y = cos(k)
|
||||
*
|
||||
* Describes a circle for values going from 0 to 2*PI. So basically if we start
|
||||
* at 45 degrees, that is k = PI/4, with the first point, and then we find
|
||||
* the other three points incrementing K by PI/2 (90 degrees), we'll have the
|
||||
* points of the square. In order to rotate the square, we just start with
|
||||
* k = PI/4 + rotation_angle, and we are done.
|
||||
*
|
||||
* Of course the vanilla equations above will describe the square inside a
|
||||
* circle of radius 1, so in order to draw larger squares we'll have to
|
||||
* multiply the obtained coordinates, and then translate them. However this
|
||||
* is much simpler than implementing the abstract concept of 2D shape and then
|
||||
* performing the rotation/translation transformation, so for LOLWUT it's
|
||||
* a good approach. */
|
||||
void lwDrawSquare(lwCanvas *canvas, int x, int y, float size, float angle) {
|
||||
int px[4], py[4];
|
||||
|
||||
/* Adjust the desired size according to the fact that the square inscribed
|
||||
* into a circle of radius 1 has the side of length SQRT(2). This way
|
||||
* size becomes a simple multiplication factor we can use with our
|
||||
* coordinates to magnify them. */
|
||||
size /= 1.4142135623;
|
||||
size = round(size);
|
||||
|
||||
/* Compute the four points. */
|
||||
float k = M_PI/4 + angle;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
px[j] = round(sin(k) * size + x);
|
||||
py[j] = round(cos(k) * size + y);
|
||||
k += M_PI/2;
|
||||
}
|
||||
|
||||
/* Draw the square. */
|
||||
for (int j = 0; j < 4; j++)
|
||||
lwDrawLine(canvas,px[j],py[j],px[(j+1)%4],py[(j+1)%4],1);
|
||||
}
|
||||
|
||||
/* Schotter, the output of LOLWUT of Redis 5, is a computer graphic art piece
|
||||
* generated by Georg Nees in the 60s. It explores the relationship between
|
||||
* caos and order.
|
||||
*
|
||||
* The function creates the canvas itself, depending on the columns available
|
||||
* in the output display and the number of squares per row and per column
|
||||
* requested by the caller. */
|
||||
lwCanvas *lwDrawSchotter(int console_cols, int squares_per_row, int squares_per_col) {
|
||||
/* Calculate the canvas size. */
|
||||
int canvas_width = console_cols*2;
|
||||
int padding = canvas_width > 4 ? 2 : 0;
|
||||
float square_side = (float)(canvas_width-padding*2) / squares_per_row;
|
||||
int canvas_height = square_side * squares_per_col + padding*2;
|
||||
lwCanvas *canvas = lwCreateCanvas(canvas_width, canvas_height);
|
||||
|
||||
for (int y = 0; y < squares_per_col; y++) {
|
||||
for (int x = 0; x < squares_per_row; x++) {
|
||||
int sx = x * square_side + square_side/2 + padding;
|
||||
int sy = y * square_side + square_side/2 + padding;
|
||||
/* Rotate and translate randomly as we go down to lower
|
||||
* rows. */
|
||||
float angle = 0;
|
||||
if (y > 1) {
|
||||
float r1 = (float)rand() / RAND_MAX / squares_per_col * y;
|
||||
float r2 = (float)rand() / RAND_MAX / squares_per_col * y;
|
||||
float r3 = (float)rand() / RAND_MAX / squares_per_col * y;
|
||||
if (rand() % 2) r1 = -r1;
|
||||
if (rand() % 2) r2 = -r2;
|
||||
if (rand() % 2) r3 = -r3;
|
||||
angle = r1;
|
||||
sx += r2*square_side/3;
|
||||
sy += r3*square_side/3;
|
||||
}
|
||||
lwDrawSquare(canvas,sx,sy,square_side,angle);
|
||||
}
|
||||
}
|
||||
|
||||
return canvas;
|
||||
}
|
||||
|
||||
/* Converts the canvas to an SDS string representing the UTF8 characters to
|
||||
* print to the terminal in order to obtain a graphical representaiton of the
|
||||
* logical canvas. The actual returned string will require a terminal that is
|
||||
* width/2 large and height/4 tall in order to hold the whole image without
|
||||
* overflowing or scrolling, since each Barille character is 2x4. */
|
||||
sds lwRenderCanvas(lwCanvas *canvas) {
|
||||
sds text = sdsempty();
|
||||
for (int y = 0; y < canvas->height; y += 4) {
|
||||
for (int x = 0; x < canvas->width; x += 2) {
|
||||
/* We need to emit groups of 8 bits according to a specific
|
||||
* arrangement. See lwTranslatePixelsGroup() for more info. */
|
||||
int byte = 0;
|
||||
if (lwGetPixel(canvas,x,y)) byte |= (1<<0);
|
||||
if (lwGetPixel(canvas,x,y+1)) byte |= (1<<1);
|
||||
if (lwGetPixel(canvas,x,y+2)) byte |= (1<<2);
|
||||
if (lwGetPixel(canvas,x+1,y)) byte |= (1<<3);
|
||||
if (lwGetPixel(canvas,x+1,y+1)) byte |= (1<<4);
|
||||
if (lwGetPixel(canvas,x+1,y+2)) byte |= (1<<5);
|
||||
if (lwGetPixel(canvas,x,y+3)) byte |= (1<<6);
|
||||
if (lwGetPixel(canvas,x+1,y+3)) byte |= (1<<7);
|
||||
char unicode[3];
|
||||
lwTranslatePixelsGroup(byte,unicode);
|
||||
text = sdscatlen(text,unicode,3);
|
||||
}
|
||||
if (y != canvas->height-1) text = sdscatlen(text,"\n",1);
|
||||
}
|
||||
return text;
|
||||
}
|
||||
|
||||
/* The LOLWUT command:
|
||||
*
|
||||
* LOLWUT [terminal columns] [squares-per-row] [squares-per-col]
|
||||
*
|
||||
* By default the command uses 66 columns, 8 squares per row, 12 squares
|
||||
* per column.
|
||||
*/
|
||||
void lolwutCommand(client *c) {
|
||||
long cols = 66;
|
||||
long squares_per_row = 8;
|
||||
long squares_per_col = 12;
|
||||
|
||||
/* Parse the optional arguments if any. */
|
||||
if (c->argc > 1 &&
|
||||
getLongFromObjectOrReply(c,c->argv[1],&cols,NULL) != C_OK)
|
||||
return;
|
||||
|
||||
if (c->argc > 2 &&
|
||||
getLongFromObjectOrReply(c,c->argv[2],&squares_per_row,NULL) != C_OK)
|
||||
return;
|
||||
|
||||
if (c->argc > 3 &&
|
||||
getLongFromObjectOrReply(c,c->argv[3],&squares_per_col,NULL) != C_OK)
|
||||
return;
|
||||
|
||||
/* Limits. We want LOLWUT to be always reasonably fast and cheap to execute
|
||||
* so we have maximum number of columns, rows, and output resulution. */
|
||||
if (cols < 1) cols = 1;
|
||||
if (cols > 1000) cols = 1000;
|
||||
if (squares_per_row < 1) squares_per_row = 1;
|
||||
if (squares_per_row > 200) squares_per_row = 200;
|
||||
if (squares_per_col < 1) squares_per_col = 1;
|
||||
if (squares_per_col > 200) squares_per_col = 200;
|
||||
|
||||
/* Generate some computer art and reply. */
|
||||
lwCanvas *canvas = lwDrawSchotter(cols,squares_per_row,squares_per_col);
|
||||
sds rendered = lwRenderCanvas(canvas);
|
||||
rendered = sdscat(rendered,
|
||||
"\nGeorg nees - schotter, plotter on paper, 1968. Redis ver. ");
|
||||
/* The default target for LOLWUT if no matching version was found.
|
||||
* This is what unstable versions of Redis will display. */
|
||||
void lolwutUnstableCommand(client *c) {
|
||||
sds rendered = sdsnew("Redis ver. ");
|
||||
rendered = sdscat(rendered,REDIS_VERSION);
|
||||
rendered = sdscatlen(rendered,"\n",1);
|
||||
addReplyBulkSds(c,rendered);
|
||||
lwFreeCanvas(canvas);
|
||||
}
|
||||
|
||||
void lolwutCommand(client *c) {
|
||||
char *v = REDIS_VERSION;
|
||||
if ((v[0] == '5' && v[1] == '.') ||
|
||||
(v[0] == '4' && v[1] == '.' && v[2] == '9'))
|
||||
lolwut5Command(c);
|
||||
else
|
||||
lolwutUnstableCommand(c);
|
||||
}
|
||||
|
282
src/lolwut5.c
Normal file
282
src/lolwut5.c
Normal file
@ -0,0 +1,282 @@
|
||||
/*
|
||||
* Copyright (c) 2018, Salvatore Sanfilippo <antirez at gmail dot com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of Redis nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* ----------------------------------------------------------------------------
|
||||
*
|
||||
* This file implements the LOLWUT command. The command should do something
|
||||
* fun and interesting, and should be replaced by a new implementation at
|
||||
* each new version of Redis.
|
||||
*/
|
||||
|
||||
#include "server.h"
|
||||
#include <math.h>
|
||||
|
||||
/* This structure represents our canvas. Drawing functions will take a pointer
|
||||
* to a canvas to write to it. Later the canvas can be rendered to a string
|
||||
* suitable to be printed on the screen, using unicode Braille characters. */
|
||||
typedef struct lwCanvas {
|
||||
int width;
|
||||
int height;
|
||||
char *pixels;
|
||||
} lwCanvas;
|
||||
|
||||
/* Translate a group of 8 pixels (2x4 vertical rectangle) to the corresponding
|
||||
* braille character. The byte should correspond to the pixels arranged as
|
||||
* follows, where 0 is the least significant bit, and 7 the most significant
|
||||
* bit:
|
||||
*
|
||||
* 0 3
|
||||
* 1 4
|
||||
* 2 5
|
||||
* 6 7
|
||||
*
|
||||
* The corresponding utf8 encoded character is set into the three bytes
|
||||
* pointed by 'output'.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
void lwTranslatePixelsGroup(int byte, char *output) {
|
||||
int code = 0x2800 + byte;
|
||||
/* Convert to unicode. This is in the U0800-UFFFF range, so we need to
|
||||
* emit it like this in three bytes:
|
||||
* 1110xxxx 10xxxxxx 10xxxxxx. */
|
||||
output[0] = 0xE0 | (code >> 12); /* 1110-xxxx */
|
||||
output[1] = 0x80 | ((code >> 6) & 0x3F); /* 10-xxxxxx */
|
||||
output[2] = 0x80 | (code & 0x3F); /* 10-xxxxxx */
|
||||
}
|
||||
|
||||
/* Allocate and return a new canvas of the specified size. */
|
||||
lwCanvas *lwCreateCanvas(int width, int height) {
|
||||
lwCanvas *canvas = zmalloc(sizeof(*canvas));
|
||||
canvas->width = width;
|
||||
canvas->height = height;
|
||||
canvas->pixels = zmalloc(width*height);
|
||||
memset(canvas->pixels,0,width*height);
|
||||
return canvas;
|
||||
}
|
||||
|
||||
/* Free the canvas created by lwCreateCanvas(). */
|
||||
void lwFreeCanvas(lwCanvas *canvas) {
|
||||
zfree(canvas->pixels);
|
||||
zfree(canvas);
|
||||
}
|
||||
|
||||
/* Set a pixel to the specified color. Color is 0 or 1, where zero means no
|
||||
* dot will be displyed, and 1 means dot will be displayed.
|
||||
* Coordinates are arranged so that left-top corner is 0,0. You can write
|
||||
* out of the size of the canvas without issues. */
|
||||
void lwDrawPixel(lwCanvas *canvas, int x, int y, int color) {
|
||||
if (x < 0 || x >= canvas->width ||
|
||||
y < 0 || y >= canvas->height) return;
|
||||
canvas->pixels[x+y*canvas->width] = color;
|
||||
}
|
||||
|
||||
/* Return the value of the specified pixel on the canvas. */
|
||||
int lwGetPixel(lwCanvas *canvas, int x, int y) {
|
||||
if (x < 0 || x >= canvas->width ||
|
||||
y < 0 || y >= canvas->height) return 0;
|
||||
return canvas->pixels[x+y*canvas->width];
|
||||
}
|
||||
|
||||
/* Draw a line from x1,y1 to x2,y2 using the Bresenham algorithm. */
|
||||
void lwDrawLine(lwCanvas *canvas, int x1, int y1, int x2, int y2, int color) {
|
||||
int dx = abs(x2-x1);
|
||||
int dy = abs(y2-y1);
|
||||
int sx = (x1 < x2) ? 1 : -1;
|
||||
int sy = (y1 < y2) ? 1 : -1;
|
||||
int err = dx-dy, e2;
|
||||
|
||||
while(1) {
|
||||
lwDrawPixel(canvas,x1,y1,color);
|
||||
if (x1 == x2 && y1 == y2) break;
|
||||
e2 = err*2;
|
||||
if (e2 > -dy) {
|
||||
err -= dy;
|
||||
x1 += sx;
|
||||
}
|
||||
if (e2 < dx) {
|
||||
err += dx;
|
||||
y1 += sy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Draw a square centered at the specified x,y coordinates, with the specified
|
||||
* rotation angle and size. In order to write a rotated square, we use the
|
||||
* trivial fact that the parametric equation:
|
||||
*
|
||||
* x = sin(k)
|
||||
* y = cos(k)
|
||||
*
|
||||
* Describes a circle for values going from 0 to 2*PI. So basically if we start
|
||||
* at 45 degrees, that is k = PI/4, with the first point, and then we find
|
||||
* the other three points incrementing K by PI/2 (90 degrees), we'll have the
|
||||
* points of the square. In order to rotate the square, we just start with
|
||||
* k = PI/4 + rotation_angle, and we are done.
|
||||
*
|
||||
* Of course the vanilla equations above will describe the square inside a
|
||||
* circle of radius 1, so in order to draw larger squares we'll have to
|
||||
* multiply the obtained coordinates, and then translate them. However this
|
||||
* is much simpler than implementing the abstract concept of 2D shape and then
|
||||
* performing the rotation/translation transformation, so for LOLWUT it's
|
||||
* a good approach. */
|
||||
void lwDrawSquare(lwCanvas *canvas, int x, int y, float size, float angle) {
|
||||
int px[4], py[4];
|
||||
|
||||
/* Adjust the desired size according to the fact that the square inscribed
|
||||
* into a circle of radius 1 has the side of length SQRT(2). This way
|
||||
* size becomes a simple multiplication factor we can use with our
|
||||
* coordinates to magnify them. */
|
||||
size /= 1.4142135623;
|
||||
size = round(size);
|
||||
|
||||
/* Compute the four points. */
|
||||
float k = M_PI/4 + angle;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
px[j] = round(sin(k) * size + x);
|
||||
py[j] = round(cos(k) * size + y);
|
||||
k += M_PI/2;
|
||||
}
|
||||
|
||||
/* Draw the square. */
|
||||
for (int j = 0; j < 4; j++)
|
||||
lwDrawLine(canvas,px[j],py[j],px[(j+1)%4],py[(j+1)%4],1);
|
||||
}
|
||||
|
||||
/* Schotter, the output of LOLWUT of Redis 5, is a computer graphic art piece
|
||||
* generated by Georg Nees in the 60s. It explores the relationship between
|
||||
* caos and order.
|
||||
*
|
||||
* The function creates the canvas itself, depending on the columns available
|
||||
* in the output display and the number of squares per row and per column
|
||||
* requested by the caller. */
|
||||
lwCanvas *lwDrawSchotter(int console_cols, int squares_per_row, int squares_per_col) {
|
||||
/* Calculate the canvas size. */
|
||||
int canvas_width = console_cols*2;
|
||||
int padding = canvas_width > 4 ? 2 : 0;
|
||||
float square_side = (float)(canvas_width-padding*2) / squares_per_row;
|
||||
int canvas_height = square_side * squares_per_col + padding*2;
|
||||
lwCanvas *canvas = lwCreateCanvas(canvas_width, canvas_height);
|
||||
|
||||
for (int y = 0; y < squares_per_col; y++) {
|
||||
for (int x = 0; x < squares_per_row; x++) {
|
||||
int sx = x * square_side + square_side/2 + padding;
|
||||
int sy = y * square_side + square_side/2 + padding;
|
||||
/* Rotate and translate randomly as we go down to lower
|
||||
* rows. */
|
||||
float angle = 0;
|
||||
if (y > 1) {
|
||||
float r1 = (float)rand() / RAND_MAX / squares_per_col * y;
|
||||
float r2 = (float)rand() / RAND_MAX / squares_per_col * y;
|
||||
float r3 = (float)rand() / RAND_MAX / squares_per_col * y;
|
||||
if (rand() % 2) r1 = -r1;
|
||||
if (rand() % 2) r2 = -r2;
|
||||
if (rand() % 2) r3 = -r3;
|
||||
angle = r1;
|
||||
sx += r2*square_side/3;
|
||||
sy += r3*square_side/3;
|
||||
}
|
||||
lwDrawSquare(canvas,sx,sy,square_side,angle);
|
||||
}
|
||||
}
|
||||
|
||||
return canvas;
|
||||
}
|
||||
|
||||
/* Converts the canvas to an SDS string representing the UTF8 characters to
|
||||
* print to the terminal in order to obtain a graphical representaiton of the
|
||||
* logical canvas. The actual returned string will require a terminal that is
|
||||
* width/2 large and height/4 tall in order to hold the whole image without
|
||||
* overflowing or scrolling, since each Barille character is 2x4. */
|
||||
sds lwRenderCanvas(lwCanvas *canvas) {
|
||||
sds text = sdsempty();
|
||||
for (int y = 0; y < canvas->height; y += 4) {
|
||||
for (int x = 0; x < canvas->width; x += 2) {
|
||||
/* We need to emit groups of 8 bits according to a specific
|
||||
* arrangement. See lwTranslatePixelsGroup() for more info. */
|
||||
int byte = 0;
|
||||
if (lwGetPixel(canvas,x,y)) byte |= (1<<0);
|
||||
if (lwGetPixel(canvas,x,y+1)) byte |= (1<<1);
|
||||
if (lwGetPixel(canvas,x,y+2)) byte |= (1<<2);
|
||||
if (lwGetPixel(canvas,x+1,y)) byte |= (1<<3);
|
||||
if (lwGetPixel(canvas,x+1,y+1)) byte |= (1<<4);
|
||||
if (lwGetPixel(canvas,x+1,y+2)) byte |= (1<<5);
|
||||
if (lwGetPixel(canvas,x,y+3)) byte |= (1<<6);
|
||||
if (lwGetPixel(canvas,x+1,y+3)) byte |= (1<<7);
|
||||
char unicode[3];
|
||||
lwTranslatePixelsGroup(byte,unicode);
|
||||
text = sdscatlen(text,unicode,3);
|
||||
}
|
||||
if (y != canvas->height-1) text = sdscatlen(text,"\n",1);
|
||||
}
|
||||
return text;
|
||||
}
|
||||
|
||||
/* The LOLWUT command:
|
||||
*
|
||||
* LOLWUT [terminal columns] [squares-per-row] [squares-per-col]
|
||||
*
|
||||
* By default the command uses 66 columns, 8 squares per row, 12 squares
|
||||
* per column.
|
||||
*/
|
||||
void lolwut5Command(client *c) {
|
||||
long cols = 66;
|
||||
long squares_per_row = 8;
|
||||
long squares_per_col = 12;
|
||||
|
||||
/* Parse the optional arguments if any. */
|
||||
if (c->argc > 1 &&
|
||||
getLongFromObjectOrReply(c,c->argv[1],&cols,NULL) != C_OK)
|
||||
return;
|
||||
|
||||
if (c->argc > 2 &&
|
||||
getLongFromObjectOrReply(c,c->argv[2],&squares_per_row,NULL) != C_OK)
|
||||
return;
|
||||
|
||||
if (c->argc > 3 &&
|
||||
getLongFromObjectOrReply(c,c->argv[3],&squares_per_col,NULL) != C_OK)
|
||||
return;
|
||||
|
||||
/* Limits. We want LOLWUT to be always reasonably fast and cheap to execute
|
||||
* so we have maximum number of columns, rows, and output resulution. */
|
||||
if (cols < 1) cols = 1;
|
||||
if (cols > 1000) cols = 1000;
|
||||
if (squares_per_row < 1) squares_per_row = 1;
|
||||
if (squares_per_row > 200) squares_per_row = 200;
|
||||
if (squares_per_col < 1) squares_per_col = 1;
|
||||
if (squares_per_col > 200) squares_per_col = 200;
|
||||
|
||||
/* Generate some computer art and reply. */
|
||||
lwCanvas *canvas = lwDrawSchotter(cols,squares_per_row,squares_per_col);
|
||||
sds rendered = lwRenderCanvas(canvas);
|
||||
rendered = sdscat(rendered,
|
||||
"\nGeorg nees - schotter, plotter on paper, 1968. Redis ver. ");
|
||||
rendered = sdscat(rendered,REDIS_VERSION);
|
||||
rendered = sdscatlen(rendered,"\n",1);
|
||||
addReplyBulkSds(c,rendered);
|
||||
lwFreeCanvas(canvas);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user