Merge pull request #496 from Sosthene-Guedon/doc-improvement

Doc improvement
This commit is contained in:
Markus Westerlind 2020-01-06 23:17:14 +01:00 committed by GitHub
commit 25e88edfe9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 564 additions and 214 deletions

View File

@ -6,6 +6,12 @@ pub enum Expr {
Error,
}
pub enum ExprSymbol<'input>{
NumSymbol(&'input str),
Op(Box<ExprSymbol<'input>>, Opcode, Box<ExprSymbol<'input>>),
Error,
}
#[derive(Copy, Clone)]
pub enum Opcode {
Mul,
@ -25,6 +31,17 @@ impl Debug for Expr {
}
}
impl<'input> Debug for ExprSymbol<'input> {
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error> {
use self::ExprSymbol::*;
match *self {
NumSymbol(n) => write!(fmt, "{:?}", n),
Op(ref l, op, ref r) => write!(fmt, "({:?} {:?} {:?})", l, op, r),
Error => write!(fmt, "error"),
}
}
}
impl Debug for Opcode {
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error> {
use self::Opcode::*;

View File

@ -0,0 +1,34 @@
use std::str::FromStr;
use ast::{Expr, Opcode};
grammar(scale: i32);
pub Expr: Box<Expr> = { // (1)
Expr ExprOp Factor => Box::new(Expr::Op(<>)), // (2)
Factor,
};
ExprOp: Opcode = { // (3)
"+" => Opcode::Add,
"-" => Opcode::Sub,
};
Factor: Box<Expr> = {
Factor FactorOp Term => Box::new(Expr::Op(<>)),
Term,
};
FactorOp: Opcode = {
"*" => Opcode::Mul,
"/" => Opcode::Div,
};
Term: Box<Expr> = {
Num => Box::new(Expr::Number(<>)),
"(" <Expr> ")"
};
Num: i32 = {
r"[0-9]+" => i32::from_str(<>).unwrap()*scale,
};

View File

@ -0,0 +1,36 @@
use ast::{ExprSymbol, Opcode};
use tok8::Tok;
grammar<'input>(input: &'input str);
pub Expr: Box<ExprSymbol<'input>> = { // (1)
Expr "ExprOp" Factor => Box::new(ExprSymbol::Op(<>)), // (2)
Factor,
};
Factor: Box<ExprSymbol<'input>> = {
Factor "FactorOp" Term => Box::new(ExprSymbol::Op(<>)),
Term,
};
Term: Box<ExprSymbol<'input>> = {
"num" => Box::new(ExprSymbol::NumSymbol(<>)),
"(" <Expr> ")"
};
extern {
type Location = usize;
type Error = ();
enum Tok<'input> {
"num" => Tok::NumSymbol(<&'input str>),
"FactorOp" => Tok::FactorOp(<Opcode>),
"ExprOp" => Tok::ExprOp(<Opcode>),
"(" => Tok::ParenOpen,
")" => Tok::ParenClose,
}
}

View File

@ -125,6 +125,31 @@ fn calculator6() {
assert_eq!(errors.len(), 4);
}
lalrpop_mod!(pub calculator7);
#[test]
fn calculator7() {
let scale = 2;
let expr = calculator7::ExprParser::new()
.parse(scale,"11 * 22 + 33")
.unwrap();
assert_eq!(&format!("{:?}", expr), "((22 * 44) + 66)");
}
lalrpop_mod!(pub calculator8);
mod tok8;
use tok8::Lexer;
#[test]
fn calculator8() {
let input = "22 * pi + 66";
let lexer = Lexer::new(input);
let expr = calculator8::ExprParser::new()
.parse(input,lexer)
.unwrap();
assert_eq!(&format!("{:?}", expr), "((\"22\" * \"pi\") + \"66\")");
}
#[cfg(not(test))]
fn main() {
println!("Hello, world!");

View File

@ -0,0 +1,59 @@
use ast::Opcode;
pub type Spanned<Tok, Loc, Error> = Result<(Loc, Tok, Loc), Error>;
#[derive(Copy, Clone, Debug)]
pub enum Tok<'input> {
NumSymbol(&'input str),
FactorOp(Opcode),
ExprOp(Opcode),
ParenOpen,
ParenClose,
}
use std::str::CharIndices;
pub struct Lexer<'input> {
chars: std::iter::Peekable<CharIndices<'input>>,
input: &'input str,
}
impl<'input> Lexer<'input> {
pub fn new(input: &'input str) -> Self {
Lexer {
chars: input.char_indices().peekable(),
input,
}
}
}
impl<'input> Iterator for Lexer<'input> {
type Item = Spanned<Tok<'input>, usize, ()>;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.chars.next() {
Some((_, ' ')) | Some((_, '\n')) | Some((_, '\t')) => continue,
Some((i, ')')) => return Some(Ok((i, Tok::ParenClose, i + 1))),
Some((i, '(')) => return Some(Ok((i, Tok::ParenOpen, i + 1))),
Some((i, '+')) => return Some(Ok((i, Tok::ExprOp(Opcode::Add), i + 1))),
Some((i, '-')) => return Some(Ok((i, Tok::ExprOp(Opcode::Sub), i + 1))),
Some((i, '*')) => return Some(Ok((i, Tok::FactorOp(Opcode::Mul), i + 1))),
Some((i, '/')) => return Some(Ok((i, Tok::FactorOp(Opcode::Div), i + 1))),
None => return None, // End of file
Some((i,_)) => {
loop {
match self.chars.peek() {
Some((j, ')'))|Some((j, '('))|Some((j, '+'))|Some((j, '-'))|Some((j, '*'))|Some((j, '/'))|Some((j,' '))
=> return Some(Ok((i, Tok::NumSymbol(&self.input[i..*j]), *j))),
None => return Some(Ok((i, Tok::NumSymbol(&self.input[i..]),self.input.len()))),
_ => {},
}
self.chars.next();
}
}
}
}
}
}

View File

@ -7,12 +7,15 @@
- [Adding LALRPOP to your project](tutorial/001_adding_lalrpop.md)
- [Parsing parenthesized numbers](tutorial/002_paren_numbers.md)
- [Type inference](tutorial/003_type_inference.md)
- [Controlling the lexer](tutorial/004_controlling_lexer.md)
- [Handling full expressions](tutorial/005_full_expressions.md)
- [Building ASTs](tutorial/006_building_asts.md)
- [Macros](tutorial/007_macros.md)
- [Error recovery](tutorial/008_error_recovery.md)
- [Writing a custom lexer](lexer_tutorial/index.md)
- [Handling full expressions](tutorial/004_full_expressions.md)
- [Building ASTs](tutorial/005_building_asts.md)
- [Macros](tutorial/006_macros.md)
- [Error recovery](tutorial/007_error_recovery.md)
- [Passing state parameter](tutorial/008_state_parameter.md)
- [Controlling the lexer](lexer_tutorial/index.md)
- [LALRPOP's lexer generator](lexer_tutorial/001_lexer_gen.md)
- [Writing a custom lexer](lexer_tutorial/002_writing_custom_lexer.md)
- [Using tokens with references](lexer_tutorial/003_token_references.md)
- [Advanced setup](advanced_setup.md)
- [Generate in source tree](generate_in_source.md)
-----------

View File

@ -1,4 +1,4 @@
# Controlling the lexer
# LALRPOP's lexer generator
This example dives a bit deeper into how LALRPOP works. In particular,
it dives into the meaning of those strings and regular expression that

View File

@ -0,0 +1,201 @@
# Writing a custom lexer
Let's say we want to parse the Whitespace language, so we've put together a grammar like the following:
```lalrpop
pub Program = <Statement*>;
Statement: ast::Stmt = {
" " <StackOp>,
"\t" " " <MathOp>,
"\t" "\t" <HeapOp>,
"\n" <FlowCtrl>,
"\t" "\n" <Io>,
};
StackOp: ast::Stmt = {
" " <Number> => ast::Stmt::Push(<>),
"\n" " " => ast::Stmt::Dup,
"\n" "\t" => ast::Stmt::Swap,
"\n" "\n" => ast::Stmt::Discard,
};
MathOp: ast::Stmt = {
" " " " => ast::Stmt::Add,
" " "\t" => ast::Stmt::Sub,
" " "\n" => ast::Stmt::Mul,
"\t" " " => ast::Stmt::Div,
"\t" "\t" => ast::Stmt::Mod,
};
// Remainder omitted
```
Naturally, it doesn't work. By default, LALRPOP generates a tokenizer that skips all whitespace -- including newlines. What we *want* is to capture whitespace characters and ignore the rest as comments, and LALRPOP does the opposite of that.
At the moment, LALRPOP doesn't allow you to configure the default tokenizer. In the future it will become quite flexible, but for now we have to write our own.
Let's start by defining the stream format. The parser will accept an iterator where each item in the stream has the following structure:
```lalrpop
pub type Spanned<Tok, Loc, Error> = Result<(Loc, Tok, Loc), Error>;
```
`Loc` is typically just a `usize`, representing a byte offset into the input string. Each token is accompanied by two of them, marking the start and end positions where it was found. `Error` can be pretty much anything you choose. And of course `Tok` is the meat of the stream, defining what possible values the tokens themselves can have. Following the conventions of Rust iterators, we'll signal a valid token with `Some(Ok(...))`, an error with `Some(Err(...))`, and EOF with `None`.
(Note that the term "tokenizer" normally refers to a piece of code that simply splits up the stream, whereas a "lexer" also tags each token with its lexical category. What we're writing is the latter.)
Whitespace is a simple language from a lexical standpoint, with only three valid tokens:
```lalrpop
pub enum Tok {
Space,
Tab,
Linefeed,
}
```
Everything else is a comment. There are no invalid lexes, so we'll define our own error type, a void enum:
```lalrpop
pub enum LexicalError {
// Not possible
}
```
Now for the lexer itself. We'll take a string slice as its input. For each token we process, we'll want to know the character value, and the byte offset in the string where it begins. We can do that by wrapping the `CharIndices` iterator, which yields tuples of `(usize, char)` representing exactly that information.
```lalrpop
use std::str::CharIndices;
pub struct Lexer<'input> {
chars: CharIndices<'input>,
}
impl<'input> Lexer<'input> {
pub fn new(input: &'input str) -> Self {
Lexer { chars: input.char_indices() }
}
}
```
(The lifetime parameter `'input` indicates that the Lexer cannot outlive the string it's trying to parse.)
Let's review our rules:
- For a space character, we output `Tok::Space`.
- For a tab character, we output `Tok::Tab`.
- For a linefeed (newline) character, we output `Tok::Linefeed`.
- We skip all other characters.
- If we've reached the end of the string, we'll return `None` to signal EOF.
Writing a lexer for a language with multi-character tokens can get very complicated, but this is so straightforward, we can translate it directly into code without thinking very hard. Here's our `Iterator` implementation:
```lalrpop
impl<'input> Iterator for Lexer<'input> {
type Item = Spanned<Tok, usize, LexicalError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.chars.next() {
Some((i, ' ')) => return Some(Ok((i, Tok::Space, i+1))),
Some((i, '\t')) => return Some(Ok((i, Tok::Tab, i+1))),
Some((i, '\n')) => return Some(Ok((i, Tok::Linefeed, i+1))),
None => return None, // End of file
_ => continue, // Comment; skip this character
}
}
}
}
```
That's it. That's all we need.
## Updating the parser
To use this with LALRPOP, we need to expose its API to the parser. It's pretty easy to do, but also somewhat magical, so pay close attention. Pick a convenient place in the grammar file (I chose the bottom) and insert an `extern` block:
```lalrpop
extern {
// ...
}
```
Now we tell LALRPOP about the `Location` and `Error` types, as if we're writing a trait:
```lalrpop
extern {
type Location = usize;
type Error = lexer::LexicalError;
// ...
}
```
We expose the `Tok` type by kinda sorta redeclaring it:
```lalrpop
extern {
type Location = usize;
type Error = lexer::LexicalError;
enum lexer::Tok {
// ...
}
}
```
Now we have to declare each of our terminals. For each variant of `Tok`, we pick what name the parser will see, and write a pattern of the form `name => lexer::Tok::Variant`, similar to how action code works in grammar rules. The name can be an identifier, or a string literal. We'll use the latter.
Here's the whole thing:
```lalrpop
extern {
type Location = usize;
type Error = lexer::LexicalError;
enum lexer::Tok {
" " => lexer::Tok::Space,
"\t" => lexer::Tok::Tab,
"\n" => lexer::Tok::Linefeed,
}
}
```
From now on, the parser will take a `Lexer` as its input instead of a string slice, like so:
```rust
let lexer = lexer::Lexer::new("\n\n\n");
match parser::parse_Program(lexer) {
...
}
```
And any time we write a string literal in the grammar, it'll substitute a variant of our `Tok` enum. This means **we don't have to change any of the rules we already wrote!** This will work as-is:
```lalrpop
FlowCtrl: ast::Stmt = {
" " " " <Label> => ast::Stmt::Mark(<>),
" " "\t" <Label> => ast::Stmt::Call(<>),
" " "\n" <Label> => ast::Stmt::Jump(<>),
"\t" " " <Label> => ast::Stmt::Jz(<>),
"\t" "\t" <Label> => ast::Stmt::Js(<>),
"\t" "\n" => ast::Stmt::Return,
"\n" "\n" => ast::Stmt::Exit,
};
```
The complete grammar is available in `whitespace/src/parser.lalrpop`.
## Where to go from here
Things to try that apply to lexers in general:
- Longer tokens
- Tokens that require tracking internal lexer state
Things to try that are LALRPOP-specific:
- Persuade a lexer generator to output the `Spanned` format
- Make this tutorial better

View File

@ -0,0 +1,133 @@
# Using tokens with references
When using a custom lexer, you might want tokens to hold references to the original input.
This allows to use references to the input when the grammar can have arbitrary symbols such as variable names.
Using references instead of copying the symbols can improve performance and memory usage of the parser.
## The Lexer
We can now create a new calculator parser that can deal with symbols the same way an interpreter would deal with variables.
First we need the corresponding AST :
``` rust
pub enum ExprSymbol<'input>{
NumSymbol(&'input str),
Op(Box<ExprSymbol<'input>>, Opcode, Box<ExprSymbol<'input>>),
Error,
}
```
Then, we need to build the tokens:
``` rust
#[derive(Copy, Clone, Debug)]
pub enum Tok<'input> {
NumSymbol(&'input str),
FactorOp(Opcode),
ExprOp(Opcode),
ParenOpen,
ParenClose,
}
```
Notice the NumSymbol type holding a reference to the original input.
It represents both numbers and variable names as a slice of the original input.
Then, we can build the lexer itself.
``` rust
use std::str::CharIndices;
pub struct Lexer<'input> {
chars: std::iter::Peekable<CharIndices<'input>>,
input: &'input str,
}
impl<'input> Lexer<'input> {
pub fn new(input: &'input str) -> Self {
Lexer {
chars: input.char_indices().peekable(),
input,
}
}
}
```
It needs to hold a reference to the input to put slices in the tokens.
``` rust
impl<'input> Iterator for Lexer<'input> {
type Item = Spanned<Tok<'input>, usize, ()>;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.chars.next() {
Some((_, ' ')) | Some((_, '\n')) | Some((_, '\t')) => continue,
Some((i, ')')) => return Some(Ok((i, Tok::ParenClose, i + 1))),
Some((i, '(')) => return Some(Ok((i, Tok::ParenOpen, i + 1))),
Some((i, '+')) => return Some(Ok((i, Tok::ExprOp(Opcode::Add), i + 1))),
Some((i, '-')) => return Some(Ok((i, Tok::ExprOp(Opcode::Sub), i + 1))),
Some((i, '*')) => return Some(Ok((i, Tok::FactorOp(Opcode::Mul), i + 1))),
Some((i, '/')) => return Some(Ok((i, Tok::FactorOp(Opcode::Div), i + 1))),
None => return None, // End of file
Some((i,_)) => {
loop {
match self.chars.peek() {
Some((j, ')'))|Some((j, '('))|Some((j, '+'))|Some((j, '-'))|Some((j, '*'))|Some((j, '/'))|Some((j,' '))
=> return Some(Ok((i, Tok::NumSymbol(&self.input[i..*j]), *j))),
None => return Some(Ok((i, Tok::NumSymbol(&self.input[i..]),self.input.len()))),
_ => {self.chars.next();},
}
}
}
}
}
}
}
```
It's quite simple, it returns any operator, and if it detects any other character, stores the beginning then continues to the next operator and sends the symbol it just parsed.
## The parser
We can then take a look at the corresponding parser with a new grammar:
``` rust
Term: Box<ExprSymbol<'input>> = {
"num" => Box::new(ExprSymbol::NumSymbol(<>)),
"(" <Expr> ")"
};
```
We need to pass the input to the parser so that the input's lifetime is known to the borrow checker when compiling the generated parser.
``` rust
grammar<'input>(input: &'input str);
```
Then we just need to define the tokens the same as before :
``` rust
extern {
type Location = usize;
type Error = ();
enum Tok<'input> {
"num" => Tok::NumSymbol(<&'input str>),
"FactorOp" => Tok::FactorOp(<Opcode>),
"ExprOp" => Tok::ExprOp(<Opcode>),
"(" => Tok::ParenOpen,
")" => Tok::ParenClose,
}
}
```
# Calling the parser
We can finally run the parser we built:
``` rust
let input = "22 * pi + 66";
let lexer = Lexer::new(input);
let expr = calculator8::ExprParser::new()
.parse(input,lexer)
.unwrap();
assert_eq!(&format!("{:?}", expr), "((\"22\" * \"pi\") + \"66\")");
```

View File

@ -1,201 +1,7 @@
# Writing a custom lexer
# Fine control over the lexer
Let's say we want to parse the Whitespace language, so we've put together a grammar like the following:
This part is about controling the inner workings of LALRPOP's built-in lexer generator and using your own hand written parser.
```lalrpop
pub Program = <Statement*>;
Statement: ast::Stmt = {
" " <StackOp>,
"\t" " " <MathOp>,
"\t" "\t" <HeapOp>,
"\n" <FlowCtrl>,
"\t" "\n" <Io>,
};
StackOp: ast::Stmt = {
" " <Number> => ast::Stmt::Push(<>),
"\n" " " => ast::Stmt::Dup,
"\n" "\t" => ast::Stmt::Swap,
"\n" "\n" => ast::Stmt::Discard,
};
MathOp: ast::Stmt = {
" " " " => ast::Stmt::Add,
" " "\t" => ast::Stmt::Sub,
" " "\n" => ast::Stmt::Mul,
"\t" " " => ast::Stmt::Div,
"\t" "\t" => ast::Stmt::Mod,
};
// Remainder omitted
```
Naturally, it doesn't work. By default, LALRPOP generates a tokenizer that skips all whitespace -- including newlines. What we *want* is to capture whitespace characters and ignore the rest as comments, and LALRPOP does the opposite of that.
At the moment, LALRPOP doesn't allow you to configure the default tokenizer. In the future it will become quite flexible, but for now we have to write our own.
Let's start by defining the stream format. The parser will accept an iterator where each item in the stream has the following structure:
```lalrpop
pub type Spanned<Tok, Loc, Error> = Result<(Loc, Tok, Loc), Error>;
```
`Loc` is typically just a `usize`, representing a byte offset into the input string. Each token is accompanied by two of them, marking the start and end positions where it was found. `Error` can be pretty much anything you choose. And of course `Tok` is the meat of the stream, defining what possible values the tokens themselves can have. Following the conventions of Rust iterators, we'll signal a valid token with `Some(Ok(...))`, an error with `Some(Err(...))`, and EOF with `None`.
(Note that the term "tokenizer" normally refers to a piece of code that simply splits up the stream, whereas a "lexer" also tags each token with its lexical category. What we're writing is the latter.)
Whitespace is a simple language from a lexical standpoint, with only three valid tokens:
```lalrpop
pub enum Tok {
Space,
Tab,
Linefeed,
}
```
Everything else is a comment. There are no invalid lexes, so we'll define our own error type, a void enum:
```lalrpop
pub enum LexicalError {
// Not possible
}
```
Now for the lexer itself. We'll take a string slice as its input. For each token we process, we'll want to know the character value, and the byte offset in the string where it begins. We can do that by wrapping the `CharIndices` iterator, which yields tuples of `(usize, char)` representing exactly that information.
```lalrpop
use std::str::CharIndices;
pub struct Lexer<'input> {
chars: CharIndices<'input>,
}
impl<'input> Lexer<'input> {
pub fn new(input: &'input str) -> Self {
Lexer { chars: input.char_indices() }
}
}
```
(The lifetime parameter `'input` indicates that the Lexer cannot outlive the string it's trying to parse.)
Let's review our rules:
- For a space character, we output `Tok::Space`.
- For a tab character, we output `Tok::Tab`.
- For a linefeed (newline) character, we output `Tok::Linefeed`.
- We skip all other characters.
- If we've reached the end of the string, we'll return `None` to signal EOF.
Writing a lexer for a language with multi-character tokens can get very complicated, but this is so straightforward, we can translate it directly into code without thinking very hard. Here's our `Iterator` implementation:
```lalrpop
impl<'input> Iterator for Lexer<'input> {
type Item = Spanned<Tok, usize, LexicalError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.chars.next() {
Some((i, ' ')) => return Some(Ok((i, Tok::Space, i+1))),
Some((i, '\t')) => return Some(Ok((i, Tok::Tab, i+1))),
Some((i, '\n')) => return Some(Ok((i, Tok::Linefeed, i+1))),
None => return None, // End of file
_ => continue, // Comment; skip this character
}
}
}
}
```
That's it. That's all we need.
## Updating the parser
To use this with LALRPOP, we need to expose its API to the parser. It's pretty easy to do, but also somewhat magical, so pay close attention. Pick a convenient place in the grammar file (I chose the bottom) and insert an `extern` block:
```lalrpop
extern {
// ...
}
```
Now we tell LALRPOP about the `Location` and `Error` types, as if we're writing a trait:
```lalrpop
extern {
type Location = usize;
type Error = lexer::LexicalError;
// ...
}
```
We expose the `Tok` type by kinda sorta redeclaring it:
```lalrpop
extern {
type Location = usize;
type Error = lexer::LexicalError;
enum lexer::Tok {
// ...
}
}
```
Now we have to declare each of our terminals. For each variant of `Tok`, we pick what name the parser will see, and write a pattern of the form `name => lexer::Tok::Variant`, similar to how action code works in grammar rules. The name can be an identifier, or a string literal. We'll use the latter.
Here's the whole thing:
```lalrpop
extern {
type Location = usize;
type Error = lexer::LexicalError;
enum lexer::Tok {
" " => lexer::Tok::Space,
"\t" => lexer::Tok::Tab,
"\n" => lexer::Tok::Linefeed,
}
}
```
From now on, the parser will take a `Lexer` as its input instead of a string slice, like so:
```rust
let lexer = lexer::Lexer::new("\n\n\n");
match parser::parse_Program(lexer) {
...
}
```
And any time we write a string literal in the grammar, it'll substitute a variant of our `Tok` enum. This means **we don't have to change any of the rules we already wrote!** This will work as-is:
```lalrpop
FlowCtrl: ast::Stmt = {
" " " " <Label> => ast::Stmt::Mark(<>),
" " "\t" <Label> => ast::Stmt::Call(<>),
" " "\n" <Label> => ast::Stmt::Jump(<>),
"\t" " " <Label> => ast::Stmt::Jz(<>),
"\t" "\t" <Label> => ast::Stmt::Js(<>),
"\t" "\n" => ast::Stmt::Return,
"\n" "\n" => ast::Stmt::Exit,
};
```
The complete grammar is available in `whitespace/src/parser.lalrpop`.
## Where to go from here
Things to try that apply to lexers in general:
- Longer tokens
- Tokens that require tracking internal lexer state
Things to try that are LALRPOP-specific:
- Persuade a lexer generator to output the `Spanned` format
- Make this tutorial better
- [LALRPOP's lexer generator](001_lexer_gen.md)
- [Writing a custom lexer](002_writing_custom_lexer.md)
- [Using tokens with references](003_token_references.md)

View File

@ -0,0 +1,36 @@
# Passing state parameter
By default, the parser doesn't take any argument other than the input.
When building the AST, it might be useful to pass parameters to the parser, which might be needed to the construction of the tree.
Going back to the calculator4 example it is possible to pass an argument to the parser :
```rust
grammar(scale: i32);
```
```rust
Num: i32 = {
r"[0-9]+" => i32::from_str(<>).unwrap()*scale,
};
```
Here the parser will accept a scale parameter that will scale every number encountered.
We can then call the parser with the state parameter :
```rust
#[test]
fn calculator7() {
let scale = 2;
let expr = calculator7::ExprParser::new()
.parse(scale,"11 * 22 + 33")
.unwrap();
assert_eq!(&format!("{:?}", expr), "((22 * 44) + 66)");
}
```
For a more practical example with a custom tree structure, check out [this parser](https://github.com/lalrpop/lalrpop/blob/master/lalrpop-test/src/expr_arena.lalrpop) using [this structure](https://github.com/lalrpop/lalrpop/blob/master/lalrpop-test/src/expr_arena_ast.rs) to build the AST.

View File

@ -3,14 +3,14 @@ This is a tutorial for how to write a complete parser for a simple calculator us
If you are unfamiliar with what a parser generator is, you should read [Crash course on parsers]
first.
- [Adding LALRPOP to your project](tutorial/001_adding_lalrpop.html)
- [Parsing parenthesized numbers](tutorial/002_paren_numbers.html)
- [Type inference](tutorial/003_type_inference.html)
- [Controlling the lexer](tutorial/004_controlling_lexer.html)
- [Handling full expressions](tutorial/005_full_expressions.html)
- [Building ASTs](tutorial/006_building_asts.html)
- [Macros](tutorial/007_macros.html)
- [Error recovery](tutorial/008_error_recovery.html)
- [Adding LALRPOP to your project](001_adding_lalrpop.md)
- [Parsing parenthesized numbers](002_paren_numbers.md)
- [Type inference](003_type_inference.md)
- [Handling full expressions](004_full_expressions.md)
- [Building ASTs](005_building_asts.md)
- [Macros](006_macros.md)
- [Error recovery](007_error_recovery.md)
- [Passing state parameter](008_state_parameter.md)
This tutorial is still incomplete. Here are some topics that I aim to
cover when I get time to write about them: