js-libp2p/examples/connection-encryption
Alex Potsides 199395de4d
feat: convert to typescript (#1172)
Converts this module to typescript.

- Ecosystem modules renamed from (e.g.) `libp2p-tcp` to `@libp2p/tcp`
- Ecosystem module now have named exports
- Configuration has been updated, now pass instances of modules instead of classes:
- Some configuration keys have been renamed to make them more descriptive.  `transport` -> `transports`, `connEncryption` -> `connectionEncryption`.  In general where we pass multiple things, the key is now plural, e.g. `streamMuxer` -> `streamMuxers`, `contentRouting` -> `contentRouters`, etc.  Where we are configuring a singleton the config key is singular, e.g. `connProtector` -> `connectionProtector` etc.
- Properties of the `modules` config key have been moved to the root
- Properties of the `config` config key have been moved to the root
```js
// before
import Libp2p from 'libp2p'
import TCP from 'libp2p-tcp'

await Libp2p.create({
  modules: {
    transport: [
      TCP
    ],
  }
  config: {
    transport: {
      [TCP.tag]: {
        foo: 'bar'
      }
    },
    relay: {
      enabled: true,
      hop: {
        enabled: true,
        active: true
      }
    }
  }
})
```
```js
// after
import { createLibp2p } from 'libp2p'
import { TCP } from '@libp2p/tcp'

await createLibp2p({
  transports: [
    new TCP({ foo: 'bar' })
  ],
  relay: {
    enabled: true,
    hop: {
      enabled: true,
      active: true
    }
  }
})
```
- Use of `enabled` flag has been reduced - previously you could pass a module but disable it with config.  Now if you don't want a feature, just don't pass an implementation.   Eg:
```js
// before
await Libp2p.create({
  modules: {
    transport: [
      TCP
    ],
    pubsub: Gossipsub
  },
  config: {
    pubsub: {
      enabled: false
    }
  }
})
```
```js
// after
await createLibp2p({
  transports: [
    new TCP()
  ]
})
```
- `.multiaddrs` renamed to `.getMultiaddrs()` because it's not a property accessor, work is done by that method to calculate announce addresses, observed addresses, etc
- `/p2p/${peerId}` is now appended to all addresses returned by `.getMultiaddrs()` so they can be used opaquely (every consumer has to append the peer ID to the address to actually use it otherwise).  If you need low-level unadulterated addresses, call methods on the address manager.

BREAKING CHANGE: types are no longer hand crafted, this module is now ESM only
2022-03-28 14:30:27 +01:00
..
2022-03-28 14:30:27 +01:00
2022-03-28 14:30:27 +01:00
2022-03-28 14:30:27 +01:00

Connection Encryption

libp2p can leverage the encrypted communications from the transports it uses (i.e WebRTC). To ensure that every connection is encrypted, independently of how it was set up, libp2p also supports a set of modules that encrypt every communication established.

We call this usage a connection upgrade where given a connection between peer A to peer B, a protocol handshake can be performed that gives that connection new properties.

A byproduct of having these encrypted communications modules is that we can authenticate the peers we are dialing to. You might have noticed that every time we dial to a peer in libp2p space, we always use its PeerId at the end (e.g /ip4/127.0.0.1/tcp/89765/p2p/QmWCbVw1XZ8hiYBwwshPce2yaTDYTqTaP7GCHGpry3ykWb), this PeerId is generated by hashing the Public Key of the peer. With this, we can create a crypto challenge when dialing to another peer and prove that peer is the owner of a PrivateKey that matches the Public Key we know.

1. Set up encrypted communications

We will build this example on top of example for Protocol and Stream Multiplexing. You will need the @chainsafe/libp2p-noise module to complete it, go ahead and npm install @chainsafe/libp2p-noise.

To add them to your libp2p configuration, all you have to do is:

import { createLibp2p } from 'libp2p'
import { TCP } from '@libp2p/tcp'
import { Mplex } from '@libp2p/mplex'
import { Noise } from '@chainsafe/libp2p-noise'

const createNode = async () => {
  return await createLibp2p({
    transports: [ new TCP() ],
    streamMuxers: [ new Mplex() ],
    // Attach noise as the crypto channel to use
    conectionEncrypters: [ new Noise() ]
  })
}

And that's it, from now on, all your libp2p communications are encrypted. Try running the example 1.js to see it working.